A Process Algebraic Fluid Flow Model of Emergency Egress

M. Massink, D. Latella, A. Bracciali
CNR-ISTI
Pisa, Italy
Email: {M.Massink, D.Latella, A.Bracciali}@isti.cnr.it

M. D. Harrison
School of Computing Science
Newcastle University
Newcastle upon Tyne, UK
Michael.Harrison@ncl.ac.uk

Abstract—Pervasive environments offer an increasing number of services to a large number of people moving within these environments including timely information about where to go and when. People using these services interact with the system but they are also meeting other people and performing other activities as relevant opportunities arise. The design of such systems and the analysis of collective dynamic behaviour of people within them is a challenging problem. In previous work we have successfully explored a scalable analysis of stochastic process algebraic models of smart signage systems. In this paper we focus on the validation of a representative example of this class of models in the context of emergency egress. This context has the advantage that there is detailed data available from studies with alternative analysis methods. A second aim is to show how realistic human behaviour, often observed in emergency egress, can be embedded in the model and how the effect of this behaviour on building evacuation can be analysed in an efficient and scalable way.

Keywords—collective behaviour; validation; process algebra; fluid flow;

I. INTRODUCTION

Smart signage systems, intended as pervasive computing systems, designed to support various kinds of user such as travellers, patients and tourists in physical environments, are an important area of research. These systems, embedded within physical spatial settings, combine the use of sensors, displays and handheld mobile devices to provide timely information and services relevant to the people in a particular environment or situation. Envisaged environments include airports, hospitals, museums and open air public events. Common recurring elements of smart signage systems are: physical spaces; (handheld) displays; sensors; services and users. Users will interpret information on displays and, ideally, carry out activities as a result of what has been read. There are many interesting issues that need to be addressed in the design of such systems. These include the identification of congestion and interference when different groups of users move through the same common physical spaces; arrival times under different assumptions about the presence of other people sharing the spaces and routing information provided to them; the effect of common individual behaviour deviating from standard behaviour through error or because of other circumstances and the effect of dynamic changes in the physical space on the flow of people. Modelling such issues to provide predictive information about design alternatives not only requires adequate user and environment models but also needs to be highly scalable, domain oriented, easy to develop and efficient before it can be adopted by practitioners in the early phases of design. The formal modelling and analysis of human flows and collective behaviour in smart environments is still a challenging and largely unexplored problem.

In the past, stochastic models have been used to capture various aspects of human behaviour. In [4] performance aspects of continuous interaction with a finger tracking system have been successfully modelled and analysed and in [2] stochastic models have been used to compare the usability of different interface designs. More recently, stochastic models of user and system behaviour have been used to analyse and predict user performance in the presence of external interruptions [1]. The interest in the use of stochastic models to address aspects of human behaviour may not come as a complete surprise because human behaviour is neither completely deterministic, nor is it completely random or irrational. Empirical research shows that temporal aspects of human behaviour and the likelihood of error can be described by using stochastic probability distributions [14].

However, though there is experience with stochastic modelling in a traditional HCI setting, the issue of scalability has remained problematic. A fundamental problem with most formal modelling approaches and the analysis of large collections of processes is how to deal with the state space explosion that arises as a consequence of interleaving the behaviour of the many independent people and services that such processes model. Approaches based on simulation can handle, in principle, a large number of entities and rather complex behaviour, but these techniques are computationally expensive. These costs may be justified when a final system design is analysed, but are often prohibitive when used to explore many options during early phases of design. Furthermore, any technique used during design should facilitate remodelling of the system working with alternative assumptions and allowing comparison of results. Other techniques such as stochastic model-checking can only be used for models with a number of states that is far below what would be needed to analyse collective behaviour in an airport or a realistic smart signage system. Though such techniques in this case may be useful to explore the model for a small number of entities, other methods of analysis are
needed to be able to analyse the effect of collective behaviour. A promising alternative analysis method, called process algebraic Fluid Flow analysis for the performance evaluation process algebra (PEPA), which has been proposed by Hillston [8], is based on the abstraction of the identity of similar processes. In this approach only the number of processes that are in a given state at any time is recorded. For each collection of processes this number is represented as a continuous function of time. Underlying ordinary differential equations (ODE) describe the evolution of these functions over time and can be derived automatically from the high level process algebraic model and then used for a form of transient analysis. Such analysis provides a view of the quantitative aspects of the collective behaviour over time. Tool support exists [15] for the automatic derivation of ODE from PEPA and the provision of various forms of analysis including Fluid Flow analysis and stochastic simulation [5]. A first exploration of the application of this approach to the modelling of a generic smart signage system can be found in [6] and [11]. These works focus on feasibility and scalability of the approach.

In this paper the main focus is validation of the quantitative aspects of a representative example of this class of models of smart service/signage systems. The particular instance chosen is that of emergency egress. Models of emergency egress typically involve physical locations through which people move to one or more predefined exits following particular routes. Such models have been extensively studied in the literature and detailed information is available on realistic case studies. One of the most widely known approaches, Evacnet4 is based on a capacitated network flow transhipment algorithm and used for the generation of optimal building evacuation plans. The user’s guide of this method [9] provides a detailed case study of emergency evacuation of a three storey building which will be used here as a basis for the validation of the results of a Fluid Flow analysis of a process algebraic model of the same system. A further validation is provided by comparing the results obtained with the process algebraic Fluid Flow approximation to those obtained via a limited stochastic simulation of the same model. Though stochastic simulation is in general more time consuming, as long as the models are not too large it provides additional validation of the results obtained as a comparison with the results of Fluid Flow approximation. In addition to the validation of the approach using data from the Evacnet4 study, the paper takes the further step of extending the PEPA model to include typical dynamic aspects of realistic evacuee behaviour. A number of such aspects have been mentioned in recent critical reviews of emergency evacuation simulation models [12], [13]. Examples are evacuees that get wounded or intoxicated and as a consequence change their speed of movement or obstruct part of a room or corridor. Evacuees may also change direction when they observe danger in front of them and some may start searching for missing friends, colleagues or family members. There are many such observed social behaviours and they may have significant impact on the success of an evacuation. In [12] it is observed that current modelling techniques are either not suitable to take such dynamic behaviour into account, or are based on detailed simulation techniques, requiring time and computational resources. This work is a first step to explore the extent to which PEPA models can be used to model aspects of social dynamic human behaviour and whether a Fluid Flow analysis may be helpful in obtaining efficient and realistic approximations in comparison to approaches based on simulation.

The outline of the paper is the following. First the emergency egress case study described in [9] is presented in Section II. This is followed by a very brief introduction on the Fluid Flow Semantics of PEPA in Section III. In Section IV a Fluid Flow PEPA model of the case study is introduced and a comparison of the results concerning egress time and presence of persons in the building over time is presented in Section V. Subsequently, in Section VI an overview of commonly observed adaptive behaviour in emergency egress situations is given and an example is shown of how such behaviour can be included in the overall model and what contribution Fluid Flow analysis may provide to the analysis of the effect of such behaviour. In Section VII a scaled version of the model is analysed dealing with a scenario with 21,200 evacuees. Section VIII finally provides a summary of the results obtained and directions for future research.

II. THE EMERGENCY EGRESS CASE STUDY

The case study used for the validation of our Fluid Flow models of smart signage systems is a representative example of the emergency evacuation of a three storey building. The study is described in detail in [9]. The case study description includes human factors details such as how fast people cover a certain distance on average and how many people may pass on average through a standard door in a given time period. In Figure 1 the three storey building of the case study is shown. Open spaces between building elements represent doors. Rooms and other building sections referred to as ‘locations’, ‘sections’ or ‘nodes’ in the paper, are identified by a three letter acronym. The first letter indicates whether it is a room (r), a hall (h), a stairwell (s), a landing (l) or a lobby (o). The second letter indicates which room, hall etc. it is, by a letter ranging from a to z. The third letter indicates the floor level; ground floor (g), second floor (s) and third floor (t). The numbers NC/IC denote the node capacity (NC) and the number of people initially present (IC).

III. PEPA AND FLUID FLOW SEMANTICS

This section contains a very brief overview of the stochastic process algebra PEPA [7] and its Fluid Flow semantics [8]. Systems are described in PEPA as interactions of components that may engage in activities. Components reflect the behaviour of relevant parts of the system. Activities capture the behaviours that the components perform. A component may itself be composed of components. A PEPA activity consists of a pair (action type, rate) in which action type (sometimes abbreviated by simply action) denotes the type of the action, while rate characterises the negative exponential
distribution of the activity duration. In this paper durations will be measured in minutes. A positive real-valued random variable \(X\) is exponentially distributed with rate \(r\) if the probability of \(X\) being at most \(t\), i.e. \(\text{Prob}(X \leq t)\), is \(1 - e^{-rt}\) if \(t \geq 0\) and is 0 otherwise, where \(t\) is a real non-negative number. The expected value of \(X\) is \(1/r\). The PEPA expressions considered in this paper may be formally specified using the following grammar:

\[
S ::= (a, r).S \mid S + S \mid C \mid P ::= P \parallel L P \mid S
\]

where \(S\) denotes a \textit{sequential component} and \(P\) denotes either a \textit{model component} or a sequential component. \(C\) stands for a constant which denotes a sequential component. A sequential component \((a, r).S\) carries out activity \((a, r)\). After performing the activity, the component behaves as \(S\). Component \(S_1 + S_2\) models a system that may behave either as \(S_1\) or as \(S_2\), representing a race condition between the two components. The model component \(P_1 \parallel L P_2\), where \(\parallel\) is the cooperation operator, defines the set of action types \(L\) on which model components \(P_1\) and \(P_2\) must synchronise (or cooperate); both model components proceed independently with any activity not occurring in \(L\). The expected duration of a cooperation of activities \(a\) belonging to \(L\) is a function of the expected durations of the corresponding activities in the components. Typically, it corresponds to the longest one ([7] provides a detailed definition). Two shorthand notations are introduced. If the set \(L\) is empty \(P_1 \parallel L P_2\) is written as \(P_1 \parallel P_2\). If there are \(n\) copies of \(P_1\) in parallel cooperating over \(L\) with \(m\) parallel copies of \(P_2\) this is written as: \(P_1[n] \parallel L P_2[m]\). Constants are defined by means of proper defining equations. This way legal PEPA components are cooperations of sequential processes.

PEPA semantics allows for the application of different analysis and evaluation techniques including Fluid Flow analysis of which we give a very brief summary, for details see [8]. Suppose a PEPA model \(S1[n1] \parallel L S2[n2] \parallel L \ldots \parallel L S_{k-1}\) \(Sk[nk]\) is given, which is composed of \(n1 + n2 + \ldots + nk\) sequential components. Each \(S_j\) is defined by means of a PEPA defining equation \(S_j = S_{j1} \parallel L S_{j2} \parallel L \ldots S_{jv} \parallel L S_{jw}\), where \(S_j, S_{jr}, S_{jv}, \ldots S_{jw}\) are the relevant states of \(S_j\); all such states are themselves characterised by means of proper defining equations. The solution of the set of ODEs associated with the PEPA model is a set of continuous functions. In particular, there is one function \(S(t)\) for each state \(S\) occurring in the original specification and, for each time instant \(t\), \(S(t)\) yields a continuous approximation of the total number of components which are in state \(S\) at time \(t\), given the initial conditions \(S1(0) = n1, S2(0) = n2, \ldots, Sk(0) = nk\). The values \(n1, n2, \ldots, nk\) defining the number of components initially present in the system can be very high, e.g. thousands or even millions if needed. This provides the possibility of scalability.

IV. PEPA MODEL OF EMERGENCY EGRESS

In this section a concise description of the model is provided. It is composed of processes describing the behaviour of evacuees, processes modelling doors between building sections, processes modelling the handling of requests for information by the evacuees and processes modelling the occupancy of space by evacuees in the various building sections.

A. Evacuees

Evacuees are assumed to be somewhere in the building at the time of an alarm, after which they move towards an exit. Each evacuee knows (it is assumed) which building exit is the nearest and that they get information about where to go next every time they enter a new location. As an example we illustrate the behaviour of evacuees located in Room \(rat\) at the third floor heading to exit \(g\). The process name \(EvcEgoprat\) reads as “\textit{Evacuee going towards Exit} \(g\) \textit{occupies a place in Room} \(rat\)\", from which location a request is made for information to go to exit \(g\) by means of synchronisation with a request handler on action \(lrateg\). The name of this action reads as “\textit{when in location} \(rat\) \textit{and heading to exit} \(g\) \textit{where should I go next?}”. This request is sent implicitly without involvement of the evacuee e.g. by a handheld device, but modelled explicitly. The request takes a little time to be emitted which is characterised by rate \(a = 60\).

\[EvcEgoprat = (lrateg, a).EvcEgRecrat\]

After the request the evacuee awaits a response. This is modelled by \(EvcEgRecrat\):

\[EvcEgRecrat = (egratlhat, r).MveEgFratThat\]
\[MveEgFratThat = (nop, ustep/d).EvcEgFratThat\]
The response depends in general on the current location and the time available to the required exit. In the above case there is only one possibility. The evacuee moves from Room rat to Hall $\hat{\text{hat}}$ (third floor). In the general case, for example in Hall A at the third floor the specification would look like:

\[
\text{EvcEgArrived} = (\text{nop}, a).\text{EvcEgArrived}
\]

After these activities the evacuee has officially ‘arrived’ at the destination exit. This latter behaviour is modelled as an infinite loop by process EvcEgArrived, performing only activity nop (no-operation) with rate a without synchronisation. Modelling the status of the evacuee in this way permits visualisation of the number of evacuees that have arrived over time. The value of the rate at the self-loop at EvcEgArrived has no influence on the overall performance.

B. Doors

Doors are very simple processes. They model the average time needed to let one person pass through a standard door. The process DUratThat models a standard door from Room rat to Hall $\hat{\text{hat}}$ at the third floor:

\[
\text{DUratThat} = (\text{ratThat}, udr).\text{DUratThat}
\]

The parameter udr characterises the average time it takes a person to pass through such a door. Based on experimental data from [9] a rate of $\text{udr} = 30$ seems a good approximation.

When a door is non-standard, say twice as large, or when there are several doors from one section to another this is modelled by specifying the number of door-processes of a certain type in the final process composition as will be explained later. Door processes synchronise with the evacuee processes modelling evacuees passing through them.

C. Request handling

Request handling models the responses given to an evacuee that is in a certain section of the building when requesting information about where to go next to reach a certain exit. For example, process RqHLrat can handle requests from evacuees in Room rat heading for exit g or exit f. In case the exit is g, as we have seen above, synchronisation on bratop takes place and the response egratlhat is given to the evacuee, which means that in order to reach g the evacuee first has to go to location $\hat{\text{hat}}$. After the response, the request handler is again available to handle further requests. The request and response rates are the same as defined earlier.

\[
\text{RqHLrat} = (\text{bratop}, a).\text{RqHLratRespRp} + (\text{bratop}, f).\text{RqHLratRespSp}
\]

\[
\text{RqHLratRespRp} = (\text{egratlhat}, r).\text{RqHLrat}
\]

\[
\text{RqHLratRespSp} = (\text{egratlhat}, f).\text{RqHLrat}
\]

In this model the router is static and deterministic. The process algebraic specification style however makes it easy to extend the behaviour with forms of stochastic routing, distributing evacuees over different possible routes.

D. Places

When a place is free in a room (for example, rat) the process modelling an evacuee entering the room can synchronise on action type bratop and occupy a place in $\text{location} \text{rat}$. The place can be released (free place) by synchronising on action type bratop. PEPA fragment is shown of a process modelling a place in Room rat is defined below. The value of rate s is the same as that defined in the process

\[
\text{EvcEgFoagTg} = (\text{oagf}, \text{udr}).(\text{lgops}, s).\text{EvcEgArrived}
\]

\[
\text{EvcEgArrived} = (\text{nop}, a).\text{EvcEgArrived}
\]

1They can be found in Table C-3 of that document.
modelling the behaviour of evacuees.

\[
\text{PlaceFreeLrat} = (\text{lratop}, s).\text{PlaceFullLrat} \\
\text{PlaceFullLrat} = (\text{lratfp}, s).\text{PlaceFreeLrat}
\]

E. Overall model architecture

The overall model consists of two main sets of processes. The first one contains the processes relative to the evacuees initially present in the building. For instance, \text{EvcEfoprat}[18] represents 18 Evacuees with destination Exit g that initially occupy a place in room a at the third floor. The processes in this set do not synchronise with one another on any action (operator ||).

The second set contains the processes relative to doors, request handlers and free and occupied places and their initial quantities. These processes also do not synchronise with one another on any action.

The two sets are composed by means of a cooperation operator \[&&\text{lrateg}...&&\text{lgfp}\], forcing the processes in the two sets to synchronise on relevant actions. For instance, the presence of \text{lrateg} requires that evacuees in room \text{rat} heading for exit \text{g} synchronise with the proper request handler in order to be routed along the correct path.

\[
\]

\[
(\text{PlaceFreeLrat}[3] || \ldots || \text{PlaceFullLrat}[36] || \ldots || \text{PlaceFreeLrat}[13])
\]

F. Automatic generation of the model

The complete model for the three storey building is composed of many kinds of processes, each of which having many instances in parallel as indicated in the final composition of the model. The resulting state space is far beyond what could be analysed currently with, for example, stochastic model-checkers. Moreover, another factor is important. Given the size and scale of the system it is not feasible or at least easy to develop an error free version of the complete PEPA specification of the three storey building by hand. The modular structure of the model lends itself to automatic generation, starting from simple domain oriented input. This is the approach followed for the results in this paper using the functional programming language Haskell. As an example, the Tables I, II, III and IV present the domain oriented data (restricted to those for the third floor except for Table III).

<table>
<thead>
<tr>
<th>rat</th>
<th>hat</th>
<th>3</th>
<th>7</th>
<th>hat</th>
<th>1</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>rbt</td>
<td>hat</td>
<td>2</td>
<td>7</td>
<td>lwt</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>rct</td>
<td>hat</td>
<td>2</td>
<td>7</td>
<td>lwt</td>
<td>swt</td>
<td>1</td>
</tr>
</tbody>
</table>

hat	3	15	let	hat	1	5	
hat	rbt	2	15	let	set	1	10
hat	rct	2	15	swt	lwt	1	10

| hat | lwt | 1 | 15 | set | let | 1 | 10 |

| TABLE I |
| --- | --- | --- | --- | --- | --- | --- |
| from | to | n | d | from | to | n | d |
| rat | hat | 3 | 7 | hat | let | 1 | 15 |
| rbt | hat | 2 | 7 | lwt | hat | 1 | 5 |
| rct | hat | 2 | 7 | lwt | swt | 1 | 10 |
| hat | rat | 3 | 15 | let | hat | 1 | 5 |
| hat | rbt | 2 | 15 | let | set | 1 | 10 |
| hat | rct | 2 | 15 | swt | lwt | 1 | 10 |
| hat | lwt | 1 | 15 | set | let | 1 | 10 |

TABLE II

<p>| KIND AND NUMBER OF DOORS AND DISTANCES. |</p>
<table>
<thead>
<tr>
<th>loc</th>
<th>NC</th>
<th>nr. rgh</th>
<th>loc</th>
<th>NC</th>
<th>nr. rgh</th>
</tr>
</thead>
<tbody>
<tr>
<td>rat</td>
<td>211</td>
<td>4</td>
<td>let</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>rbt</td>
<td>92</td>
<td>4</td>
<td>swt</td>
<td>22</td>
<td>4</td>
</tr>
<tr>
<td>rct</td>
<td>98</td>
<td>4</td>
<td>set</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>hat</td>
<td>133</td>
<td>4</td>
<td>lwt</td>
<td>25</td>
<td>4</td>
</tr>
</tbody>
</table>

TABLE III

<p>| Evacuees initially present and related exit for all floors. |</p>
<table>
<thead>
<tr>
<th>loc</th>
<th>exit</th>
<th>nr. present</th>
</tr>
</thead>
<tbody>
<tr>
<td>rat</td>
<td>g</td>
<td>18</td>
</tr>
<tr>
<td>rat</td>
<td>f</td>
<td>18</td>
</tr>
<tr>
<td>ras</td>
<td>f</td>
<td>18</td>
</tr>
<tr>
<td>rbs</td>
<td>f</td>
<td>17</td>
</tr>
<tr>
<td>tag</td>
<td>f</td>
<td>36</td>
</tr>
</tbody>
</table>

<p>| TABLE III |</p>
<table>
<thead>
<tr>
<th>loc</th>
<th>exit</th>
<th>nr. present</th>
</tr>
</thead>
<tbody>
<tr>
<td>rat</td>
<td>g</td>
<td>18</td>
</tr>
<tr>
<td>rat</td>
<td>f</td>
<td>18</td>
</tr>
<tr>
<td>ras</td>
<td>f</td>
<td>18</td>
</tr>
<tr>
<td>rbs</td>
<td>f</td>
<td>17</td>
</tr>
<tr>
<td>tag</td>
<td>f</td>
<td>36</td>
</tr>
</tbody>
</table>

TABLE IV

<p>| Routing of evacuees for floor 3. |</p>
<table>
<thead>
<tr>
<th>from</th>
<th>exit</th>
<th>next</th>
</tr>
</thead>
<tbody>
<tr>
<td>rat</td>
<td>g</td>
<td>hat</td>
</tr>
<tr>
<td>rat</td>
<td>f</td>
<td>hat</td>
</tr>
<tr>
<td>rbt</td>
<td>g</td>
<td>hat</td>
</tr>
<tr>
<td>rbt</td>
<td>f</td>
<td>hat</td>
</tr>
<tr>
<td>rct</td>
<td>g</td>
<td>hat</td>
</tr>
<tr>
<td>rct</td>
<td>f</td>
<td>hat</td>
</tr>
<tr>
<td>hat</td>
<td>g</td>
<td>lwt</td>
</tr>
<tr>
<td>hat</td>
<td>f</td>
<td>lwt</td>
</tr>
</tbody>
</table>

<p>| TABLE IV |</p>
<table>
<thead>
<tr>
<th>from</th>
<th>exit</th>
<th>next</th>
</tr>
</thead>
<tbody>
<tr>
<td>rat</td>
<td>g</td>
<td>hat</td>
</tr>
<tr>
<td>rat</td>
<td>f</td>
<td>hat</td>
</tr>
<tr>
<td>rbt</td>
<td>g</td>
<td>hat</td>
</tr>
<tr>
<td>rbt</td>
<td>f</td>
<td>hat</td>
</tr>
<tr>
<td>rct</td>
<td>g</td>
<td>hat</td>
</tr>
<tr>
<td>rct</td>
<td>f</td>
<td>hat</td>
</tr>
<tr>
<td>hat</td>
<td>g</td>
<td>lwt</td>
</tr>
<tr>
<td>hat</td>
<td>f</td>
<td>lwt</td>
</tr>
</tbody>
</table>
to be considered. The model can be easily adapted to different scenarios, such as the presence of hurt evacuees or dynamic routing strategies, as illustrated in Section VI.

We also present averaged stochastic simulations of evacuation computed by the same PEPA toolkit. Stochastic simulations can be more informative than Fluid Flow approximation, especially when an “individual view” of the problem appears more suitable than a “population view”, but at higher computational costs. The Fluid Flow approach in PEPA can be seen as relating the two views, privileging computational viability. Under certain hypotheses and for large population numbers, this correspondence is granted by Kurt’s theorem [10], which states informally that ODE solutions represent the limit of averaging over stochastic simulations. We observe a coincidence of stochastic simulation and Fluid Flow results, even for a small number of stochastic samples and perhaps not so large population numbers. We take this as a further confirmation of the proper construction of our model.

A. Predicted building evacuation time

In Figure 2 the arrivals of all evacuees from the different rooms are shown, over the time interval [0, 5] minutes using an adaptive step-size 5th order Dormand-Prince ODE solver\(^3\). The labels in the legend are “Room Xy (z)”, where X indicates the name of the room, y indicates the floor and (z) indicates from which exit the evacuees left the building. For example, the leftmost curve in Figure 2 shows the evacuees arriving from Room A at the ground floor leaving the building through exit g. It is clear that evacuees at the ground floor are those nearest to the exits and therefore they reach these exits first. It is also clear that all evacuees from Room A at the ground floor reach their exit. In Figure 3 results are shown for a stochastic simulation of the same model using Gillespie’s algorithm [5] for the same time interval, only 10 independent runs, with confidence interval 0.05. As can be observed, the curves in Figure 2 and Figure 3 correspond reasonably well given the small number of replicated runs of the stochastic simulation.

The total (mean) time for all evacuees to leave the building is close to 3 minutes. This corresponds well to the 170 seconds predicted by Evacnet4 for the optimal evacuation time of the same three storey building. Figure 4 shows the cumulative arrivals of evacuees from all floors for each of the exits. There are in total 105 evacuees for exit g and 107 for exit f. In the original case study these numbers differ resulting in 148 for exit g and 64 for exit f. This difference can be explained by the fact that in [9] an optimal flow is calculated whereas in our model a likely flow is modelled in the sense that the people go to the nearest (in distance) exit and not necessarily to the one that is fastest to reach.

\(^3\)All stochastic simulation and Fluid Flow analyses in this paper have been performed with the mentioned parameters on an Apple iMac 2.66GHz Intel Core i5 using the PEPA-plugin analysis tool [15] unless otherwise stated.

B. Node profiles

Figure 5 shows the number of places occupied by evacuees over time for each of the building sections (rooms, halls,
landings, stairwells etc.) on every floor as a result of a Fluid Flow analysis (ODE), over the time interval [0, 5] minutes. In Figure 6 the results are shown for a stochastic simulation (GIL) of the same model. Again both figures show a good correspondence despite the low number of independent runs in the stochastic simulation.

![Figure 5. Occupied places over time (ODE)](image1)

The leftmost curves show that evacuees leave the rooms in which they are initially situated. The curve labelled PlaceFull les shows that after one minute the maximum capacity of the Eastern Landing of the 2nd floor staircase is reached indicating a bottleneck in the escape routes for the specified number of people present in the building at the time the sign for evacuation is given.

Figure 7 shows the comparison of the original node profile for Hall has 2nd floor in [9] and that of our Fluid Flow analysis. The curve labelled PlaceFull has shows the number of evacuees in the hall with a maximum reached within half a minute, according to our model. This is again in line with the results in [9], in which the maximum is reached after about 30 seconds. The number of evacuees in the Hall at peak time is 39 in [9] and 47 with the Fluid Flow model. The last evacuees leave Hall has after about 1.5 minute in the Fluid Flow model. In the Evacnet4 case the curve ends after circa 80 seconds, which is a little less than 1.5 minutes.

![Figure 6. Occupied places over time (GIL)](image2)

![Figure 7. Node profile Hall A second floor (ODE vs Evacnet4)](image3)

VI. SOCIAL ASPECTS OF EVACUEE BEHAVIOUR

One of the observations made in the review of emergency evacuation models [12], [13] is that current models incorporate only limited assumptions about human social behaviour. The incorporation of such aspects in the models could render them much more accurate and realistic. Although approaches such as Evacnet4 do take certain aspects of human factors into account, such as average inter-person spacing, average speed in walkways or staircases and the effect of doorways on the dynamic capacity of a flow, no provision is made for social (group) interaction or agent modelling. Examples of the kind of issues that would make such models more realistic are the following.

Agent homogeneity. Most approaches assume that the persons moving through the building have similar physical abilities. In reality, evacuating a primary school, a hospital or an office would require a consideration of people with varying abilities. It would be useful to be able to model explicitly certain classes of persons depending on their ability and evaluate how this would influence the overall evacuation.

Agent behaviour. In an emergency, the physical situation may change dynamically. Part of a building may fill with toxic gas or smoke that causes some people to slow down or even force them to stop. This, in turn, changes the capacity of the routes to an exit and probably causes people to move to another exit or follow a different route. Another consequence could be an increase in erroneous interpretation of guidance instructions.

Group behaviour. Some people decide to follow the direction of a leader or the flow of the majority, moving as a group rather than individually. This can significantly affect the overall evacuation process.

4In Figure C-4.10 of the document.
than as individuals. Others may decide to help people moving about in small groups. Also the effects of group decision-making processes, mixed flow directions, group integration, conflict, panic and emergent behaviour have been mentioned as factors of potential risk in emergency egress. In the following, models of some of the above social behaviours are illustrated indicating how it affects the time to evacuate a building.

A. Hurt Evacuees

A realistic event that may occur is that during evacuation a certain part of the building fills with smoke or other toxic gases. The presence of such gases could intoxicate evacuees who, as a result, are unable to proceed any further to the exits and their presence may hinder other evacuees. This would change the flow capacity of building sections dynamically.

The following excerpt of an extension of the model reflects the situation described above assuming that the landing of the Western staircase at the second floor (lws) is containing toxic gases. After entering the landing, it is assumed that evacuees have a relative probability of 20% to pass through without problems and 80% to get hurt thereby preventing them from continuing hence keeping a place in lws occupied. This holds for evacuees entering the landing from Hall A on the second floor (has), as well as for those entering from the Western stairwell at the third floor (swt). The excerpt below shows the extension for swt, that for has being similar.

\[\text{Ev} \text{Eg} \text{In} \text{LwsFs} \text{wtp} = (l \text{wsop}, 0.2 + s) \text{Ev} \text{Eg} \text{In} \text{LwsFs} \text{wtp} + (l \text{wsop}, 0.8 + s) \text{Ev} \text{G} \text{s} \text{w} \text{t} \text{H} \text{urt} \]

\[\text{Ev} \text{Eg} \text{In} \text{LwsFs} \text{wtp} = (l \text{wsop}, s) \text{Ev} \text{Eg} \text{HurtSTOP} \]

\[\text{Ev} \text{Eg} \text{HurtSTOP} = (nop, a) \text{Ev} \text{G} \text{ap} \text{w} \text{es} \]

\[\text{Ev} \text{Eg} \text{HurtSTOP} = (nop, a) (\text{Ev} \text{Eg} \text{HurtSTOP}) \]

Figure 8 shows from which rooms the wounded evacuees in the Western Landing arrive. Since the total capacity of the Western Landing on the second floor is 25 it is clear that after about one minute it has become impossible for any evacuee to pass through the Western Landing to reach the staircase.

Figure 9 shows the effect of the presence of toxic gases in the Western Landing on the arrival of evacuees from the various rooms. For example, on average, only one evacuee from room rat at the third floor arrives via exit a and the same for evacuees from room rbt at the third floor. All the others get blocked. Figure 10 shows in which other building areas on the third and second floor people get blocked due to the toxic gases in lws. Note that not only the Western Landing is full after about half a minute (curve PlaceFull lws) but also the Western staircase (curve PlaceFull swt) connecting the third and the second floor, the Western landing on the third floor (curve PlaceFull lwt) and, to some extent, the Hall on the second floor (curve PlaceFull has). This is in part due to the toxic gases hurting people in the Western Landing, but also due to the specific static routing assumptions. In this scenario it is assumed that evacuees continue to receive invalid instructions about where to go next. In reality, when people see that the way in front of them is blocked they try another exit. This is modelled in the next section.
B. Hurt evacuees and dynamic selection of alternative exits

In this section a further extension is considered in which evacuees decide to move to another exit when the entrance to the Western Landing on the second floor is increasingly blocked. This is modelled as a third option in the evacuee behaviour process below. This option may occur with a smaller rate (6 instead of 60). This reflects the fact that this option is less likely to be taken when the landing is still relatively free (race condition principle). The excerpt below shows only the extension for swt, that for has being similar.

\[
EvcEgInLlwsFs = (llwrop, 0.2 \ast s).EvcEgInLlwsFs + (llwrop, 0.8 \ast s).EvcEgsetHurt + (change, 6.0).EvcEfopsut
\]

The evaluation results in Figure 11 and Figure 12 show that in this case almost all non-hurt evacuees that were first heading to exit g but that could not pass through the Western landing, now follow indications to exit f instead and safely leave the building. We can also observe how this behaviour affects the total evacuation time.

![Fig. 11. Full places third floor model with alternative exits (ODE)](image)

![Fig. 12. Full places second floor model with alternative exits (ODE)](image)

In particular, Figure 11 shows the occupancy of the building sections at the third floor. The figure shows that evacuees from all building sections at this floor manage to leave the floor except those in the Western stairwell and some on the Western landing. This may at first seem surprising, particularly so because the model has been changed in such a way that evacuees that do not manage to enter the Western landing at the second floor, both from the Hall and from the Western stairwell at the third floor, are now able to go to another exit. A closer look at the routing table shows that evacuees in the Western stairwell at the third floor are routed to the Western landing on the second floor both in case they are going to exit g and in case they are going to exit f. This explains why those evacuees remain blocked in that stairwell in any case. In fact, this analysis shows how such routing problems may be detected. The origin of the problem is due to the fact that the routing policy is such that once people are in a stairwell going down they should not change direction in order not to cause a serious bottleneck on the stairs.

The model presented in Section IV considers only a limited number of evacuees in order to compare results with the existing case study. Figure 13 shows Fluid Flow results for a model with a total of 21,200 evacuees, assuming a much larger though similar building (obtained by multiplication of all room capacities and distances by a factor 10 and the number of evacuees by a factor of 100). Table V provides an overview of the execution time, in milliseconds, for Fluid Flow analysis (ODE) and stochastic simulation (GIL) of some of the models presented in this paper. The ODE analysis time increases with the increasing complexity of the model. A similar increase can
be observed for the stochastic simulation of the same models for 10 independent replications and the same time interval of 5 minutes. The ODE analysis of the large model of Section VII shows an interesting phenomenon. For the same time interval the ODE analysis of the large model actually takes less time than that of the same model with far fewer evacuees and node capacities. This can be explained by the adaptive step-size used by the underlying numerical algorithm. For a time interval of 100 minutes the ODE analysis takes more time, about 24 minutes, but far less than the approximately 7.5 hours that are required for simulation of one single replication.

VIII. CONCLUSIONS AND OUTLOOK

We have presented the validation of a modelling approach for collective dynamics by addressing a realistic case study in the context of smart signage systems. The problem has been drawn and adapted from an existing analysis of the emergency egress of a building, originally carried out by means of flow optimisation techniques. We have proposed the use of a Fluid Flow approach for the quantitative modeling of such systems, coupled with the expressiveness and versatility of formal method techniques based on the PEPA process algebra. Fluid Flow relies on considering classes of individuals with the same behaviour, i.e. individuals that are in the same state at any given time, and on describing the temporal evolution of such classes. The PEPA language provides an abstract, formally grounded, description of the behaviour of individuals and their interaction within the overall system. This combined approach is expressive, as the model can be easily adapted to describe different working hypotheses, and efficient, since the continuous interpretation of Fluid Flow allows efficient numerical solvers to be used. Furthermore, other analysis techniques can be used, like stochastic simulations, directly provided by the PEPA toolkit, and stochastic model checking on reduced versions of such models.

Our validation relies on a strong coherence of the results obtained by Fluid Flow, by stochastic simulations and the results of the original optimal flux analysis. A comparison of the computational costs underlines the efficiency of Fluid Flow, which hence appears as a valuable technique, especially whenever the overall behaviour of the system is not dramatically affected by stochastic noise.

Examples relating to hurt evacuees or dynamic routing decisions have also been illustrated. The relevance of such non-optimal or socially influenced behaviour for the problem domain suggests interesting directions for future work. Contextual information, like the congestion of possible escape paths or the presence or obstacles in given areas of the building, also provide results that are particularly relevant. In order to take into account richer contextual information, we have started to consider BioPEPA [3], a specialisation of PEPA tailored to the modeling of biological systems. Quantities of classes of individuals and a notion of spatial location are first class objects in this language. This allows, for instance, the number of individuals of a given class in a room to be explicitly referred to when individuals or routers make decisions on preferred escape paths. We expect that a language like BioPEPA will enhance the expressiveness of the models. Experiments have been started in collaboration with the team currently developing the BioPEPA toolkit, as a step towards the improvement of modelling in the considered domain.

ACKNOWLEDGMENT

This research has been partially funded by the CNR project RSTL-XXL and by the Italian PRIN MIUR project PaCO. The authors would like to thank Jane Hillston and Mirco Tribastone for helpful discussions of the work and their invaluable support concerning the PEPA plug-in tool.

REFERENCES

