Family-based model checking with a feature μ-calculus

Maurice ter Beek, Erik de Vink, and Tim Willemse

ISTI-CNR, Pisa, Italy & TU/e, Eindhoven, The Netherlands

Modelling and Analysis of Variability in Software Product Lines
ISTI–CNR, Pisa, June 26–30, 2017
Outline

1. Context: verification of behavioural SPL models
 - Family-based modelling and analysis

2. Towards family-based model checking with mCRL2
 - Recall: the μ-calculus μL over LTSs
 - A feature μ-calculus μL_f over FTSs

3. Main results of paper @ FMSPLE’16
 - From μL_f to μL

4. Main results of paper @ FASE’17
 - A μ-calculus with data μL_{FO} over parametrised LTSs
 - From μL_f to μL_{FO} (and back to μL)
 - Family-based partitioning algorithm for μL_f
 - Case study: minepump SPL benchmark

5. Conclusions and future work
 - The quest for an efficient partitioning strategy
Family-based modelling and analysis

Software product line (SPL) or product family

- Configurable (software) system whose variants (products) differ by the provided features, i.e. the functionality that is relevant for an end-user
- Popular in embedded and critical systems domain: formal modelling and analysis techniques for proving SPL behaviour correct are widely studied
 Thüm et al., A classification and survey of analysis strategies for SPLs @ ACM Comput. Surv. (2014)
- Challenge existing formal methods and tools by potentially high number of different products, each giving rise to a large state space in general

⇒ Lift success stories from products to families exploiting variability

Dedicated family-based SPL behavioural models and model checkers (e.g. FTSs, Feature Nets, MTSs, PL-CCS, DeltaCCS, QFLan, SNIP, ProVeLines, VMC) but recently...

Dimovski et al., Family-based model checking without a family-based model checker @ SPIN’15
Chrszon et al., Family-based modeling and analysis for probabilistic systems – featuring ProFeat @ FASE’16
Dimovski et al., Variability-specific Abstraction Refinement for Family-based Model Checking @ FASE’17
Family-based modelling and analysis

Software product line (SPL) or product family

- Configurable (software) system whose variants (products) differ by the provided features, i.e. the functionality that is relevant for an end-user
- Popular in embedded and critical systems domain: formal modelling and analysis techniques for proving SPL behaviour correct are widely studied
 Thüm et al., A classification and survey of analysis strategies for SPLs @ ACM Comput. Surv. (2014)
- Challenge existing formal methods and tools by potentially high number of different products, each giving rise to a large state space in general

⇒ Lift success stories from products to families exploiting variability

Dedicated family-based SPL behavioural models and model checkers (e.g. FTSs, Feature Nets, MTSs, PL-CCS, DeltaCCS, QFLan, SNIP, ProVeLines, VMC) but recently...

Dimovski et al., Family-based model checking without a family-based model checker @ SPIN’15
Chrszon et al., Family-based modeling and analysis for probabilistic systems – featuring ProFeat @ FASE’16
Dimovski et al., Variability-specific Abstraction Refinement for Family-based Model Checking @ FASE’17
Family-based modelling and analysis

Software product line (SPL) or product family

- Configurable (software) system whose variants (products) differ by the provided features, i.e. the functionality that is relevant for an end-user
- Popular in embedded and critical systems domain: formal modelling and analysis techniques for proving SPL behaviour correct are widely studied
 Thüm et al., A classification and survey of analysis strategies for SPLs @ ACM Comput. Surv. (2014)
- Challenge existing formal methods and tools by potentially high number of different products, each giving rise to a large state space in general

⇒ Lift success stories from products to families exploiting variability

Dedicated family-based SPL behavioural models and model checkers (e.g. FTSs, Feature Nets, MTSs, PL-CCS, DeltaCCS, QFLan, SNIP, ProVeLines, VMC)

but recently...

Dimovski et al., Family-based model checking without a family-based model checker @ SPIN’15
Chrszon et al., Family-based modeling and analysis for probabilistic systems – featuring ProFeat @ FASE’16
Dimovski et al., Variability-specific Abstraction Refinement for Family-based Model Checking © FASE’17
Family-based modelling and analysis

Software product line (SPL) or product family

- Configurable (software) system whose variants (products) differ by the provided features, i.e. the functionality that is relevant for an end-user
- Popular in embedded and critical systems domain: formal modelling and analysis techniques for proving SPL behaviour correct are widely studied

 Thüm et al., A classification and survey of analysis strategies for SPLs @ ACM Comput. Surv. (2014)

- Challenge existing formal methods and tools by potentially high number of different products, each giving rise to a large state space in general

⇒ Lift success stories from products to families exploiting variability

Dedicated family-based SPL behavioural models and model checkers (e.g. FTSs, Feature Nets, MTSs, PL-CCS, DeltaCCS, QFLan, SNIP, ProVeLines, VMC) but recently...

Dimovski et al., Family-based model checking without a family-based model checker @ SPIN’15
Chrszon et al., Family-based modeling and analysis for probabilistic systems – featuring ProFeat @ FASE’16
Dimovski et al., Variability-specific Abstraction Refinement for Family-based Model Checking @ FASE’17
FTS: featured transition systems

Classen et al., Model Checking Lots of Systems @ ICSE’10

FTS $F = (S, \theta, s_\star)$ over actions \mathcal{A} and features \mathcal{F} (typical element f)

- S a finite set of states
- $\theta : S \times \mathcal{A} \times S \rightarrow \mathcal{B}[\mathcal{F}]$ the transition constraint function
- $s_\star \in S$ the initial state

LTS $L = (S, \rightarrow, s_\star)$ over actions \mathcal{A}

- S a finite set of states
- $\rightarrow \subseteq S \times \mathcal{A} \times S$ the transition relation
- $s_\star \in S$ the initial state
FTS: featured transition systems

Classen et al., Model Checking Lots of Systems @ ICSE’10

FTS $F = (S, \theta, s_*)$ over actions \mathcal{A} and features \mathcal{F} (typical element f)

- S a finite set of states
- $\theta : S \times \mathcal{A} \times S \rightarrow \mathbb{B}[\mathcal{F}]$ the transition constraint function
- $s_* \in S$ the initial state

LTS $F|_p = (S, \rightarrow_{F|_p}, s_*)$ projection of F with respect to product p

$$
\rightarrow_{F|_p} \subseteq S \times \mathcal{A} \times S \text{ such that } s \xrightarrow{a}_{F|_p} t \text{ iff } p \models \theta(s, a, t)
$$

$\mathcal{P} \subseteq 2^\mathcal{F}$ set of products p, q, \ldots

$\mathcal{P} \subseteq \mathcal{P}$ product family, identified by feature expression $\gamma_p \in \mathbb{B}[\mathcal{F}]$

$\gamma \in \mathbb{B}[\mathcal{F}]$ interpreted as set of products Q_γ,

i.e. products p for which the induced truth assignment (true for $f \in p$, false for $f \notin p$) validates γ
FTS of example SPL

Product line of (four) coffee machines with independent features \{\$, €\}

Products with feature \$ can obtain an xxl coffee upon coin insertion, but products without cannot.

how to express this? and how to model check this efficiently?
FTS of example SPL

Product line of (four) coffee machines with independent features \{\$, €\}

Products with feature \$ can obtain an xxl coffee upon coin insertion, but products without cannot

how to express this? and how to model check this efficiently?
Towards family-based model checking

- We showed how to use mCRL2 for product-based model checking of SPL models
 ter Beek & de Vink @ FormaliSE’14, SPLC’14

- We proposed a feature-oriented modular verification technique for SPL models with mCRL2
 ter Beek & de Vink @ FMSPLE’14, ISoLA’14

- We extended branching bisimulation for LTSs to branching feature bisimulation for FTSs
 Belder, ter Beek & de Vink @ FMSPLE’15

- We defined feature-oriented modal μ-calculi to reason on FTSs by explicitly incorporating feature expressions in the modal operators
 ter Beek, de Vink & Willemse @ FMSPLE’16

- We showed how to use off-the-shelf tools like mCRL2 for family-based model checking of SPL models
 ter Beek, de Vink & Willemse @ FASE’17
Towards family-based model checking

- We showed how to use mCRL2 for product-based model checking of SPL models
 ter Beek & de Vink @ FormaliSE’14, SPLC’14

- We proposed a feature-oriented modular verification technique for SPL models with mCRL2
 ter Beek & de Vink @ FMSPLE’14, ISoLA’14

- We extended branching bisimulation for LTSs to branching feature bisimulation for FTSs
 Belder, ter Beek & de Vink @ FMSPLE’15

- We defined feature-oriented modal μ-calculi to reason on FTSs by explicitly incorporating feature expressions in the modal operators
 ter Beek, de Vink & Willemse @ FMSPLE’16

- We showed how to use off-the-shelf tools like mCRL2 for family-based model checking of SPL models
 ter Beek, de Vink & Willemse @ FASE’17
The modal μ-calculus μL

set of actions \mathcal{A}, set of variables X

μ-calculus μL over \mathcal{A} and X, formula $\varphi \in \mu L$ given by

$$\varphi :: = \bot | \top |$$
$$\ \ \ \ \ \ \neg \varphi | \varphi \lor \psi | \varphi \land \psi |$$
$$\langle a \rangle \varphi | [a] \varphi |$$
$$X | \mu X.\varphi | \nu X.\varphi$$

duality $\langle a \rangle \varphi \equiv \neg [a] \neg \varphi$, a positive normal form avoids negations

for $\mu X.\varphi$ and $\nu X.\varphi$, all free occurrences of X in φ are in the scope of an even number of negations (guarantees well-definedness fixpoint formulae)
A feature μ-calculus μL_f

set of actions \mathcal{A}, set of features \mathcal{F}, set of variables \mathcal{X}

feature μ-calculus μL_f over \mathcal{A}, \mathcal{F}, and \mathcal{X}, formula $\varphi_f \in \mu L_f$ given by

$$\varphi_f ::= \bot \mid \top \mid
\neg \varphi_f \mid \varphi_f \lor \psi_f \mid \varphi_f \land \psi_f \mid
\langle a \mid \chi \rangle \varphi_f \mid [a \mid \chi] \varphi_f \mid
\mathcal{X} \mid \mu \mathcal{X}.\varphi_f \mid \nu \mathcal{X}.\varphi_f$$

for $\mu \mathcal{X}.\varphi_f$ and $\nu \mathcal{X}.\varphi_f$ an even number of negations as before
A semantics of μL_f over FTSs

state-family pairs $(s, P) \in sPSet = 2^{S \times 2^P}$
state-family environments $\zeta \in sPEnv = X \rightarrow sPSet$
semantics $[\cdot]_F : \mu L_f \rightarrow sPEnv \rightarrow sPSet$

\[
\begin{align*}
[\bot]_F(\zeta) &= \emptyset \\
[\top]_F(\zeta) &= S \times 2^P \\
[\neg \phi_f]_F(\zeta) &= (S \times 2^P) \setminus [\phi_f]_F(\zeta) \\
[(\phi_f \lor \psi_f)]_F(\zeta) &= [\phi_f]_F(\zeta) \cup [\psi_f]_F(\zeta) \\
[(\phi_f \land \psi_f)]_F(\zeta) &= [\phi_f]_F(\zeta) \cap [\psi_f]_F(\zeta) \\
[\langle a|\chi \rangle \phi_f]_F(\zeta) &= \ldots \\
[[a|\chi] \phi_f]_F(\zeta) &= \ldots \\
[X]_F(\zeta) &= \zeta(X) \\
[\mu X. \phi_f]_F(\zeta) &= \text{lfp}(W \mapsto [\phi_f]_F(\zeta(W/X))) \\
[\nu X. \phi_f]_F(\zeta) &= \text{gfp}(W \mapsto [\phi_f]_F(\zeta(W/X)))
\end{align*}
\]
A semantics of μL_f over FTSs

$$\llbracket \langle a \mid \chi \rangle \varphi_f \rrbracket_F(\zeta) = \{ (s, P) \mid P \subseteq Q_\chi \land \exists \gamma, t: s \xrightarrow{a\mid\gamma} F t \land P \subseteq Q_\gamma \land (t, P \cap Q_\chi \cap Q_\gamma) \in \llbracket \varphi_f \rrbracket_F(\zeta) \}$$

$\langle a \mid \chi \rangle \varphi_f$ holds (for a family P with respect to an FTS F in a state s)
if all products in P satisfy the feature expression χ and
there is an a-transition, shared among all products in P,
that leads to a state where φ_f holds for P

$$\llbracket [a \mid \chi] \varphi_f \rrbracket_F(\zeta) = \{ (s, P) \mid \forall \gamma, t: s \xrightarrow{a\mid\gamma} F t \land P \cap Q_\chi \cap Q_\gamma \neq \emptyset \Rightarrow (t, P \cap Q_\chi \cap Q_\gamma) \in \llbracket \varphi_f \rrbracket_F(\zeta) \}$$

$[a \mid \chi] \varphi_f$ holds (for a family P with respect to an FTS F in a state s)
if for each subset P' of P for which an a-transition is possible,
φ_f holds for P' in the target state of that a-transition
A semantics of μL_f over FTSs

$$\ll [a|\chi] \varphi_f \rr_F(\zeta) = \{(s, P) \mid P \subseteq Q_\chi \land \exists \gamma, t: s \xrightarrow{a|\gamma}_F t \land P \subseteq Q_\gamma \land (t, P \cap Q_\chi \cap Q_\gamma) \in \ll \varphi_f \rr_F(\zeta)\}$$

$[a|\chi] \varphi_f$ holds (for a family P with respect to an FTS F in a state s) if all products in P satisfy the feature expression χ and there is an a-transition, shared among all products in P, that leads to a state where φ_f holds for P.

$$\ll [a|\chi] \varphi_f \rr_F(\zeta) = \{(s, P) \mid \forall \gamma, t: s \xrightarrow{a|\gamma}_F t \land P \cap Q_\chi \cap Q_\gamma \neq \emptyset \Rightarrow (t, P \cap Q_\chi \cap Q_\gamma) \in \ll \varphi_f \rr_F(\zeta)\}$$

$[a|\chi] \varphi_f$ holds (for a family P with respect to an FTS F in a state s) if for each subset P' of P for which an a-transition is possible, φ_f holds for P' in the target state of that a-transition.
Example μL_f formula: duality lost

$s, P \models F \varphi_f$ iff $(s, P) \in \| \varphi_f \|_F$

Products $p_1 = \{ f, g \}$ and $p_2 = \{ g \}$

Clearly: $\{ f, g \} \models F|_{p_1} \langle a \rangle_T$

$\{ g \} \models F|_{p_2} \langle a \rangle_T$

but $\ldots \{ p_1, p_2 \} \not\models F \langle a|\top \rangle_T$

Hence, since neither $\{ p_1, p_2 \} \models F \langle a|\top \rangle_T$ nor $\{ p_1, p_2 \} \models F \langle a|\top \rangle_{\bot}$, $\langle a|\chi \rangle$ and $[a|\chi]$ are not each other’s dual.
Example μL_f formula: duality lost

$s, P \models_F \varphi_f$ iff $(s, P) \in \llbracket \varphi_f \rrbracket_F$

Products $p_1 = \{f, g\}$ and $p_2 = \{g\}$

Clearly: $\{f, g\} \models_{F|p_1} \langle a \rangle T$

$\{g\} \models_{F|p_2} \langle a \rangle T$

but... $\{p_1, p_2\} \not\models_F \langle a|\top \rangle T$

Hence, since neither $\{p_1, p_2\} \models_F \langle a|\top \rangle T$ nor $\{p_1, p_2\} \models_F [a|\top] \bot$, $\langle a|\chi \rangle$ and $[a|\chi]$ are not each other's dual
Example μL_f formula: duality lost

$s, P \models_F \varphi_f \iff (s, P) \in \llbracket \varphi_f \rrbracket_F$

Products $p_1 = \{f, g\}$ and $p_2 = \{g\}$

Clearly: $\{f, g\} \models_F \langle a \rangle_T$

$\{g\} \models_F \langle a \rangle_T$

but... $\{p_1, p_2\} \not\models_F \langle a | T \rangle_T$

Hence, since neither $\{p_1, p_2\} \models_F \langle a | T \rangle_T$ nor $\{p_1, p_2\} \models_F [a | T] \perp$, $\langle a | \chi \rangle$ and $[a | \chi]$ are not each other’s dual
Examples of μL_f-formulae

- $\langle ins \mid T \rangle ([ins \mid e] \perp \land \langle std \mid T \rangle \top)$

 “the family of products P that can execute ins, after which ins cannot be executed by products satisfying e, while std can be executed by all products of P”

- $\nu X. \mu Y. (([ins \mid e] Y \land [xxl \mid e] Y) \land [std \mid e] X)$$

 “for the (sub)family of products with feature e, action std occurs infinitely often on all infinite runs over $\{ins, xxl, std\}$”

- $[true^* \mid T] ([ins \mid $] <true^*. xxl \mid T \top \top) \land [xxl \mid \neg $]) \perp$

 “products with feature $\$$ can obtain an xxl coffee upon coin insertion, but products without cannot”
Examples of μL_f-formulae

- $\langle \text{ins} \mid T \rangle (\langle \text{ins} \mid e \rangle \perp \land \langle \text{std} \mid T \rangle \top)$

 “the family of products P that can execute ins, after which ins cannot be executed by products satisfying e, while std can be executed by all products of P”

- $\nu X. \mu Y. ((\langle \text{ins} \mid e \rangle Y \land \langle \text{xxl} \mid e \rangle Y) \land \langle \text{std} \mid e \rangle X)$

 “for the (sub)family of products with feature e, action std occurs infinitely often on all infinite runs over $\{\text{ins}, \text{xxl}, \text{std}\}$”

- $\langle \text{true}^* \mid T \rangle (\langle \text{ins} \mid $ \langle \text{true}^*. \text{xxl} \mid T \rangle \top \rangle \top) \land \langle \text{xxl} \mid \neg $ \rangle \perp)$

 “products with feature $\$ \$ can obtain an xxl coffee upon coin insertion, but products without cannot”
Examples of μL_f-formulae

- $\langle ins\mid \top \rangle ([ins\mid \notin] \bot \land \langle std\mid \top \rangle \top)$
 “the family of products P that can execute ins, after which ins cannot be executed by products satisfying \notin, while std can be executed by all products of P”

- $\nu X.\mu Y.(([ins\mid \notin] Y \land [xxl\mid \notin] Y) \land [std\mid \notin] X)$
 “for the (sub)family of products with feature \notin, action std occurs infinitely often on all infinite runs over $\{ins, xxl, std\}$”

- $[true^\ast \mid \top] (([ins \mid \$] \langle true^\ast. xxl \mid \top \rangle \top) \land [xxl \mid \neg \$] \bot)$
 “products with feature $\$ can obtain an xxl coffee upon coin insertion, but products without cannot”

multi-feature μL_f formula, novel also w.r.t. fLTL and fCTL
From μL_f to μL

Model checking a μL_f-formula over an FTS for an individual product reduces to model checking a μL-formula over the corresponding LTS.

projection function $pr : \mu L_f \times \mathcal{P} \rightarrow \mu L$

$pr(\bot, p) = \bot$

$pr(\top, p) = \top$

$pr(\neg \varphi_f, p) = \neg pr(\varphi_f, p)$

$pr(\varphi_f \lor \psi_f, p) = pr(\varphi_f) \lor pr(\psi_f)$

$pr(\varphi_f \land \psi_f, p) = pr(\varphi_f) \land pr(\psi_f)$

$pr(\langle a|\chi \rangle \varphi_f, p) = \text{if } p \in Q_{\chi} \text{ then } \langle a \rangle pr(\varphi_f, p) \text{ else } \bot \text{ end}$

$pr([a|\chi] \varphi_f, p) = \text{if } p \in Q_{\chi} \text{ then } [a] pr(\varphi_f, p) \text{ else } \top \text{ end}$

$pr(X, p) = X$

$pr(\mu X.\varphi_f, p) = \mu X.pr(\varphi_f, p)$

$pr(\nu X.\varphi_f, p) = \nu X.pr(\varphi_f, p)$
From μL_f to μL

Model checking a μL_f-formula over an FTS for an individual product reduces to model checking a μL-formula over the corresponding LTS projection function $pr : \mu L_f \times P \rightarrow \mu L$

$$
pr(\perp, p) = \perp \\
pr(\top, p) = \top \\
pr(\neg \varphi_f, p) = \neg pr(\varphi_f, p) \\
pr(\varphi_f \lor \psi_f, p) = pr(\varphi_f) \lor pr(\psi_f) \\
pr(\varphi_f \land \psi_f, p) = pr(\varphi_f) \land pr(\psi_f) \\
pr(\langle a|\chi \rangle \varphi_f, p) = \textbf{if } p \in Q_{\chi} \textbf{ then } \langle a \rangle pr(\varphi_f, p) \textbf{ else } \perp \textbf{ end} \\
pr([a|\chi] \varphi_f, p) = \textbf{if } p \in Q_{\chi} \textbf{ then } [a] pr(\varphi_f, p) \textbf{ else } \top \textbf{ end} \\
pr(X, p) = X \\
pr(\mu X. \varphi_f, p) = \mu X. pr(\varphi_f, p) \\
pr(\nu X. \varphi_f, p) = \nu X. pr(\varphi_f, p)
$$
Main results of paper © FMSPLE’16

Given an FTS F and a set of products \mathcal{P}

Theorem 1 \[s, \{p\} \models_F \varphi_f \iff s \models_{F|p} \text{pr}(\varphi_f, p) \]

closed $\varphi_f \in \mu L_f$, $s \in S$, product $p \in \mathcal{P}$

Theorem 2 \[s, \mathcal{P} \models_F \varphi_f \implies \forall p \in \mathcal{P}: s \models_{F|p} \text{pr}(\varphi_f, p) \]

closed, negation-free $\varphi_f \in \mu L_f$, $s \in S$, family $\mathcal{P} \subseteq \mathcal{P}$

Note: in general $s, \mathcal{P} \not\models_F \varphi_f$ does not imply $s \not\models_{F|p} \text{pr}(\varphi_f, p)$ for all products in family \mathcal{P}
Main results of paper @ FMSPLE’16

Given an FTS F and a set of products \mathcal{P}

Theorem 1
$s, \{p\} \models_F \varphi_f \iff s \models_{F|p} \pr(\varphi_f, p)$

Closed $\varphi_f \in \mu L_f$, $s \in S$, product $p \in \mathcal{P}$

Theorem 2
$s, \mathcal{P} \models_F \varphi_f \implies \forall p \in \mathcal{P}: s \models_{F|p} \pr(\varphi_f, p)$

Closed, negation-free $\varphi_f \in \mu L_f$, $s \in S$, family $\mathcal{P} \subseteq \mathcal{P}$

Note: in general $s, \mathcal{P} \not\models_F \varphi_f$ does not imply $s \not\models_{F|p} \pr(\varphi_f, p)$ for all products in family \mathcal{P}.
Main results of paper @ FMSPLE’16

Given an FTS F and a set of products \mathcal{P}

Theorem 1
$s, \{p\} \models_F \varphi_f \iff s \models_{F|p} \text{pr}(\varphi_f, p)$

closed $\varphi_f \in \mu L_f$, $s \in S$, product $p \in \mathcal{P}$

Theorem 2
$s, \mathcal{P} \models_F \varphi_f \implies \forall p \in \mathcal{P}: s \models_{F|p} \text{pr}(\varphi_f, p)$

closed, negation-free $\varphi_f \in \mu L_f$, $s \in S$, family $\mathcal{P} \subseteq \mathcal{P}$

Note: in general $s, \mathcal{P} \not\models_F \varphi_f$ does not imply $s \not\models_{F|p} \text{pr}(\varphi_f, p)$ for all products in family \mathcal{P}
Given an FTS F and a set of products \mathcal{P}

Theorem 1 \[s, \{p\} \models_F \varphi_f \iff s \models_{F|p} \text{pr}(\varphi_f, p) \]

closed $\varphi_f \in \mu L_f$, $s \in S$, product $p \in \mathcal{P}$

Theorem 2 \[s, \mathcal{P} \models_F \varphi_f \implies \forall p \in \mathcal{P}: s \models_{F|p} \text{pr}(\varphi_f, p) \]

closed, negation-free $\varphi_f \in \mu L_f$, $s \in S$, family $\mathcal{P} \subseteq \mathcal{P}$

Note: in general $s, \mathcal{P} \not\models_F \varphi_f$ does not imply $s \not\models_{F|p} \text{pr}(\varphi_f, p)$ for all products in family \mathcal{P}
A first-order μ-calculus with data μL_{FO}

set of ‘sorted’ actions \mathcal{A}, set of features \mathcal{F}, set of data variables \mathcal{V}, set of recursion variables $\tilde{\mathcal{X}}$

μ-calculus with data μL_{FO} over $\mathcal{A}, \mathcal{F}, \mathcal{V}$ and $\tilde{\mathcal{X}}$, formula $\varphi \in \mu L_{FO}$ given by

$$\varphi_f ::= \bot \mid T \mid$$

$$\neg \varphi \mid \varphi \lor \psi \mid \varphi \land \psi \mid$$

$$\gamma_1 \Rightarrow \gamma_2 \mid \quad (Q_{\gamma_1} \subseteq Q_{\gamma_2})$$

$$\exists v. \varphi \mid \forall v. \varphi \mid$$

$$\langle a(v) \rangle \varphi \mid [a(v)] \varphi \mid$$

$$\tilde{X}(\gamma) \mid \mu \tilde{X}(v_{\tilde{X}}:=\gamma).\varphi \mid \nu \tilde{X}(v_{\tilde{X}}:=\gamma).\varphi$$

with the usual restrictions on free variables and the number of negations
Semantics μL_{FO} over parametrised LTSs

FTS $F = (S, \theta, s_*)$ over actions \mathcal{A} and features F
- S a finite set of states
- $\theta : S \times \mathcal{A} \times S \rightarrow \mathbb{B}[F]$ the transition constraint function
- $s_* \in S$ the initial state

LTS $L = (S, \rightarrow, s_*)$ over actions \mathcal{A}
- S a finite set of states
- $\rightarrow \subseteq S \times \mathcal{A} \times S$ the transition relation
- $s_* \in S$ the initial state
Semantics μL_{FO} over parametrised LTSs

FTS $F = (S, \theta, s_*)$ over actions \mathcal{A} and features \mathcal{F}
- S a finite set of states
- $\theta : S \times \mathcal{A} \times S \rightarrow B[\mathcal{F}]$ the transition constraint function
- $s_* \in S$ the initial state

parametrised LTS $L(F) = (S, \rightarrow, s_*)$ for F over actions $\mathcal{A}[\mathcal{F}] = \{ a(\gamma) \mid a \in \mathcal{A}, \gamma \in B[\mathcal{F}] \}$
- \rightarrow is defined by $s \xrightarrow{a(\gamma)} t$ iff $\theta(s, a, t) = \gamma$ and $\gamma \not\equiv \perp$

μL_{FO} is a fragment of the logic from:
- Groote & Mateescu, Verification of temporal properties of processes in a setting with data @ AMAST'99

where its full semantics can be found
Semantics μL_{FO} over parametrised LTSs

FTS $F = (S, \theta, s_*)$ over actions \mathcal{A} and features \mathcal{F}

- S a finite set of states
- $\theta : S \times \mathcal{A} \times S \rightarrow \mathbb{B}[\mathcal{F}]$ the transition constraint function
- $s_* \in S$ the initial state

parametrised LTS $L(F) = (S, \rightarrow, s_*)$ for F over actions $\mathcal{A}[\mathcal{F}] = \{ a(\gamma) | a \in \mathcal{A}, \gamma \in \mathbb{B}[\mathcal{F}] \}$

- \rightarrow is defined by $s \xrightarrow{a(\gamma)} t$ iff $\theta(s, a, t) = \gamma$ and $\gamma \neq \bot$

e.g.

\[
\llangle a(v) \rrangle_{FO}(\xi)(\theta) = \{ s | \exists \gamma, t : s \xrightarrow{a(\gamma)} t \land \theta(v) = Q_\gamma \land t \in \llangle \varphi \rrangle_{FO}(\xi)(\theta) \}
\]
i.e.

$\llangle a(v) \rrangle \varphi$ holds if there is a transition $s \xrightarrow{a(\gamma)} t$ such that family $\theta(v)$ equals family Q_γ (associated with transition’s feature expression γ) and t satisfies φ
From μL_f to μL_{FO}

translation function $tr : \mathcal{B}[F] \times \mu L_f \to \mu L_{FO}$

$$tr(\gamma, \bot) = \bot$$
$$tr(\gamma, T) = T$$
$$tr(\gamma, \neg \varphi_f) = \neg tr(\gamma, \varphi_f)$$
$$tr(\gamma, \varphi_f \lor \psi_f) = tr(\gamma, \varphi_f) \lor tr(\gamma, \psi_f)$$
$$tr(\gamma, \varphi_f \land \psi_f) = tr(\gamma, \varphi_f) \land tr(\gamma, \psi_f)$$

$$tr(\gamma, \langle a \mid \chi \rangle \varphi_f) = (\gamma \Rightarrow \chi) \land \exists v.\langle a(v)\rangle((\gamma \Rightarrow v) \land tr(\gamma \land \chi \land v, \varphi_f))$$
$$tr(\gamma, [a \mid \chi] \varphi_f) = \forall v.[a(v)]((\gamma \land \chi \land v \Rightarrow \bot) \lor tr(\gamma \land \chi \land v, \varphi_f))$$

$$tr(\gamma, X) = \tilde{X}(\gamma)$$
$$tr(\gamma, \mu X. \varphi_f) = \mu \tilde{X}(v:=\gamma).tr(v, \varphi_f)$$
$$tr(\gamma, \nu X. \varphi_f) = \nu \tilde{X}(v:=\gamma).tr(v, \varphi_f)$$
A main result of paper @ FASE’17

Given an FTS F and a set of products \mathcal{P}

Theorem 3
$s, P \models_{F} \varphi_{f} \iff s \models_{L(F)} tr(\gamma_{P}, \varphi_{f})$

closed $\varphi_{f} \in \mu L_{f}$, $s \in S$, family $P \subseteq \mathcal{P}$

Theorem 2
$s, P \models_{F} \varphi_{f} \implies \forall p \in P: s \models_{F|p} pr(\varphi_{f}, p)$

closed, negation-free $\varphi_{f} \in \mu L_{f}$, $s \in S$, family $P \subseteq \mathcal{P}$

Lemma 1
$s, P \models_{F} \varphi_{f}^{c} \implies \forall p \in P: s \not\models_{F|p} pr(\varphi_{f}, p)$

closed, negation-free $\varphi_{f} \in \mu L_{f}$, $s \in S$, family $P \subseteq \mathcal{P}$
Given an FTS F and a set of products P

Theorem 3 \(s, P \models_F \varphi_f \iff s \models_{L(F)} tr(\gamma_P, \varphi_f) \)
closed \(\varphi_f \in \mu L_f \), \(s \in S \), family \(P \subseteq P \)

Theorem 2 \(s, P \models_F \varphi_f \implies \forall p \in P : s \models_{F|p} pr(\varphi_f, p) \)
closed, negation-free \(\varphi_f \in \mu L_f \), \(s \in S \), family \(P \subseteq P \)

Lemma 1 \(s, P \models_F \varphi^c_f \implies \forall p \in P : s \not\models_{F|p} pr(\varphi_f, p) \)
closed, negation-free \(\varphi_f \in \mu L_f \), \(s \in S \), family \(P \subseteq P \)
Recall a result of paper @ FMSPLE’16

Given an FTS F and a set of products \mathcal{P}

Theorem 3 \[s, P \models_F \varphi_f \iff s \models_{L(F)} tr(\gamma_P, \varphi_f) \]
closed $\varphi_f \in \mu L_f$, $s \in S$, family $P \subseteq \mathcal{P}$

Theorem 2 \[s, P \models_F \varphi_f \implies \forall p \in P : s \models_{F|p} pr(\varphi_f, p) \]
closed, negation-free $\varphi_f \in \mu L_f$, $s \in S$, family $P \subseteq \mathcal{P}$

Lemma 1 \[s, P \models_F \varphi_f^c \implies \forall p \in P : s \not\models_{F|p} pr(\varphi_f, p) \]
closed, negation-free $\varphi_f \in \mu L_f$, $s \in S$, family $P \subseteq \mathcal{P}$
Another result of paper @ FASE’17

Given an FTS F and a set of products \mathcal{P}

Theorem 3 \[s, P \models_F \varphi_f \iff s \models_{L(F)} \text{tr}(\gamma_P, \varphi_f) \]
closed $\varphi_f \in \mu L_f$, $s \in S$, family $P \subseteq \mathcal{P}$

Theorem 2 \[s, P \models_F \varphi_f \implies \forall p \in P : s \models_{F|p} \text{pr}(\varphi_f, p) \]
closed, negation-free $\varphi_f \in \mu L_f$, $s \in S$, family $P \subseteq \mathcal{P}$

Lemma 1 \[s, P \models_F \varphi_f^c \implies \forall p \in P : s \not\models_{F|p} \text{pr}(\varphi_f, p) \]
closed, negation-free $\varphi_f \in \mu L_f$, $s \in S$, family $P \subseteq \mathcal{P}$
Family-based partitioning for \(\mu L_f \)

Given a negation-free \(\varphi_f \) and a family \(P \), compute a partitioning \((P_\oplus, P_\ominus)\) of \(P \) satisfying

\[
\forall p \in P_\oplus: s_*, p \models_{F|p} pr(\varphi_f, p) \text{ and } \forall p \in P_\ominus: s_*, p \not\models_{F|p} pr(\varphi_f, p)
\]

closed, negation-free \(\varphi_f \in \mu L_f \), family \(P \subseteq \mathcal{P} \)

Algorithm 1 Family-Based Partitioning

1: function \(\text{FBP}(P, \varphi_f) \)
2: \hspace{1em} if \(s_*, P \models F \varphi_f \) then return \((P, \emptyset)\)
3: \hspace{1em} else
4: \hspace{2em} if \(s_*, P \models F \varphi_f^c \) then return \((\emptyset, P)\)
5: \hspace{2em} else partition \(P \) into \((P_1, P_2)\)
6: \hspace{3em} \((P_1^+, P_1^-) \leftarrow \text{FBP}(P_1, \varphi_f)\)
7: \hspace{3em} \((P_2^+, P_2^-) \leftarrow \text{FBP}(P_2, \varphi_f)\)
8: \hspace{1em} return \((P_1^+ \cup P_2^+, P_1^- \cup P_2^-)\)
9: \hspace{1em} end if
10: \hspace{1em} end if
11: end function
Family-based partitioning algorithm

Theorem 4 \(\text{FBP}(P, \varphi_f) \) terminates and returns a partitioning \((P_\oplus, P_\ominus)\) of \(P \) satisfying

\[
\forall p \in P_\oplus: s_*, p \models_{F|p} pr(\varphi_f, p) \quad\text{and}\quad \forall p \in P_\ominus: s_*, p \not\models_{F|p} pr(\varphi_f, p)
\]

closed, negation-free \(\varphi_f \in \mu L_f \), family \(P \subseteq \mathcal{P} \)

Algorithm 1 Family-Based Partitioning

1: function \(\text{FBP}(P, \varphi_f) \)
2: if \(s_*, P \models_F \varphi_f \) then return \((P, \emptyset) \)
3: else
4: if \(s_*, P \models_F \varphi_f^c \) then return \((\emptyset, P) \)
5: else partition \(P \) into \((P_1, P_2)\)
6: \((P_1^+, P_1^-) \leftarrow \text{FBP}(P_1, \varphi_f) \)
7: \((P_2^+, P_2^-) \leftarrow \text{FBP}(P_2, \varphi_f) \)
8: return \((P_1^+ \cup P_2^+, P_1^- \cup P_2^-) \)
9: end if
10: end if
11: end function
Minepump SPL benchmark ($|\mathcal{P}| = 2^7$)

<table>
<thead>
<tr>
<th>Φ</th>
<th>property in μL_f</th>
<th>result</th>
<th>one-by-one</th>
<th>all-in-one</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ_1</td>
<td>Absence of deadlock</td>
<td>[true*] \langletrue$\rangle \top$</td>
<td>128/0</td>
<td>10.02</td>
</tr>
<tr>
<td>φ_2</td>
<td>The controller cannot infinitely often receive water level readings</td>
<td>$\mu X.[(\neg \text{levelMsg})^* \cdot \text{levelMsg}] \ X$</td>
<td>0/128</td>
<td>10.18</td>
</tr>
<tr>
<td>φ_3</td>
<td>The controller cannot fairly receive each of the three message types</td>
<td>$\mu X.[(\text{true}^* \cdot \text{commandMsg}) \ X \lor (\text{true}^* \cdot \text{alarmMsg}) \ X \lor (\text{true}^* \cdot \text{levelMsg}) \ X]$</td>
<td>0/128</td>
<td>24.33</td>
</tr>
<tr>
<td>φ_4</td>
<td>The pump cannot be switched on infinitely often</td>
<td>$(\mu X.\nu Y.[\text{pumpStart}.(\neg \text{pumpStop})^* \cdot \text{pumpStop}] \ X \land [\neg \text{pumpStart}] \ Y))$</td>
<td>96/32</td>
<td>21.09</td>
</tr>
<tr>
<td>φ_5</td>
<td>The system cannot be in a situation in which the pump runs indefinitely in the presence of methane</td>
<td>$(\text{true}^([\text{pumpStart}.(\neg \text{pumpStop})^ \cdot \text{methaneRise}] \mu X.[R] \ X))$</td>
<td>96/32</td>
<td>17.26</td>
</tr>
<tr>
<td>φ_6</td>
<td>Assuming fairness (φ_3), the system cannot be in a situation in which the pump runs indefinitely in the presence of methane (φ_5)</td>
<td>$(\text{true}^([\text{pumpStart}.(\neg \text{pumpStop})^ \cdot \text{methaneRise}] \Psi))$</td>
<td>112/16</td>
<td>27.32</td>
</tr>
<tr>
<td>φ_7</td>
<td>The controller can always eventually receive/ read a message, i.e. return to its initial state from any state</td>
<td>$[\text{true}^* \langle \text{true}^* \cdot \text{receiveMsg} \rangle \top)$</td>
<td>128/0</td>
<td>18.36</td>
</tr>
<tr>
<td>φ_8</td>
<td>Invariantly the pump is not started when the low water level signal fires</td>
<td>$[\text{true}^* \cdot \text{lowLevel}.(\neg (\text{normalLevel} + \text{highLevel}))^* \cdot \text{pumpStart}] \bot$</td>
<td>128/0</td>
<td>5.67</td>
</tr>
<tr>
<td>φ_9</td>
<td>Invariantly, when the level of methane rises, it inevitably decreases</td>
<td>$[\text{true}^* \cdot \text{methaneRise}] \mu X.[\neg \text{methaneLower}] \ X \land (\text{true}) \top)$</td>
<td>0/128</td>
<td>20.47</td>
</tr>
<tr>
<td>φ_{10}</td>
<td>Products with feature Ct can switch on the pump</td>
<td>$\langle \text{true}^* \cdot \text{pumpStart}</td>
<td>\text{Ct} \rangle \top$</td>
<td>32/96</td>
</tr>
<tr>
<td>φ_{11}</td>
<td>Products with feature Ct can always switch on the pump</td>
<td>$[\text{true}^*</td>
<td>\text{Ct}] \langle \text{true}^* \cdot \text{pumpStart}</td>
<td>\text{Ct} \rangle \top$</td>
</tr>
<tr>
<td>φ_{12}</td>
<td>Products with features [Ct, Ma, Lh] can start the pump upon a high water level, but products without feature Lh cannot</td>
<td>$[\text{true}^* \top)(([\text{highLevel}</td>
<td>\text{Ct} \land \text{Ma} \land \text{Lh}] \ (\text{true}^* \cdot \text{pumpStart}</td>
<td>\top) \top) \land [\text{pumpStart} \neg \text{Lh}] \bot)$</td>
</tr>
</tbody>
</table>

mCRL2 code distributed with mCRL2 toolset (svn revision 14493)
Conclusions and future work

Introduced and compared feature-oriented μ-calculi with FTS semantics

Resembles fLTL and fCTL by Classen et al., but μL_f is more expressive

Translation to μL_{FO} allows family-based model checking multi-feature properties of configurable systems with off-the-shelf tools (e.g. mCRL2)

Defined a first (naive) family-based partitioning procedure for μL_f; its efficiency depends on initial partitioning of P and quality of refinements

Future work: improve partitioning strategy

1. Determine heuristics for finding a good initial partitioning of P
2. Extract information from failed model-checking problems to find a good split-up of the family of products in line 5 of Algorithm 1

(difficult in particular for μ-calculus, since easily-interpretable feedback from its model checkers is generally missing so far)
Conclusions and future work

Introduced and compared feature-oriented μ-calculi with FTS semantics

Resembles fLTL and fCTL by Classen et al., but μL_f is more expressive

Translation to μL_{FO} allows family-based model checking multi-feature properties of configurable systems with off-the-shelf tools (e.g. mCRL2)

Defined a first (naive) family-based partitioning procedure for μL_f; its efficiency depends on initial partitioning of P and quality of refinements

Future work: improve partitioning strategy

1. Determine heuristics for finding a good initial partitioning of P
2. Extract information from failed model-checking problems to find a good split-up of the family of products in line 5 of Algorithm 1 (difficult in particular for μ-calculus, since easily-interpretable feedback from its model checkers is generally missing so far)
Conclusions and future work

Introduced and compared feature-oriented μ-calculi with FTS semantics

Resembles fLTL and fCTL by Classen et al., but μL_f is more expressive

Translation to μL_{FO} allows family-based model checking multi-feature properties of configurable systems with off-the-shelf tools (e.g. mCRL2)

Defined a first (naive) family-based partitioning procedure for μL_f; its efficiency depends on initial partitioning of P and quality of refinements

Future work: improve partitioning strategy
1. Determine heuristics for finding a good initial partitioning of P
2. Extract information from failed model-checking problems to find a good split-up of the family of products in line 5 of Algorithm 1
 (difficult in particular for μ-calculus, since easily-interpretable feedback from its model checkers is generally missing so far)
Conclusions and future work

Introduced and compared feature-oriented μ-calculi with FTS semantics
Resembles fLTL and fCTL by Classen et al., but μL_f is more expressive
Translation to μL_{FO} allows family-based model checking multi-feature properties of configurable systems with off-the-shelf tools (e.g. mCRL2)
Defined a first (naive) family-based partitioning procedure for μL_f; its efficiency depends on initial partitioning of P and quality of refinements

Future work: improve partitioning strategy
1. Determine heuristics for finding a good initial partitioning of P
2. Extract information from failed model-checking problems to find a good split-up of the family of products in line 5 of Algorithm 1 (?) (difficult in particular for μ-calculus, since easily-interpretable feedback from its model checkers is generally missing so far)
Conclusions and future work

Introduced and compared feature-oriented \(\mu \)-calculi with FTS semantics

Resembles fLTL and fCTL by Classen et al., but \(\mu L_f \) is more expressive

Translation to \(\mu L_{FO} \) allows family-based model checking multi-feature properties of configurable systems with off-the-shelf tools (e.g. mCRL2)

Defined a first (naive) family-based partitioning procedure for \(\mu L_f \); its efficiency depends on initial partitioning of \(P \) and quality of refinements

Future work: improve partitioning strategy

1. Determine heuristics for finding a good initial partitioning of \(P \)
2. Extract information from failed model-checking problems to find a good split-up of the family of products in line 5 of Algorithm 1

? (difficult in particular for \(\mu \)-calculus, since easily-interpretable feedback from its model checkers is generally missing so far)
Conclusions and future work

Introduced and compared feature-oriented μ-calculi with FTS semantics

Resembles fLTL and fCTL by Classen et al., but μL_f is more expressive

Translation to μL_{FO} allows family-based model checking multi-feature properties of configurable systems with off-the-shelf tools (e.g. mCRL2)

Defined a first (naive) family-based partitioning procedure for μL_f; its efficiency depends on initial partitioning of P and quality of refinements

Future work: improve partitioning strategy

1. Determine heuristics for finding a good initial partitioning of P

2. Extract information from failed model-checking problems to find a good split-up of the family of products in line 5 of Algorithm 1

? (difficult in particular for μ-calculus, since easily-interpretable feedback from its model checkers is generally missing so far)
Conclusions and future work

Introduced and compared feature-oriented μ-calculi with FTS semantics
Resembles fLTL and fCTL by Classen et al., but μL_f is more expressive
Translation to μL_{FO} allows family-based model checking multi-feature properties of configurable systems with off-the-shelf tools (e.g. mCRL2)
Defined a first (naive) family-based partitioning procedure for μL_f; its efficiency depends on initial partitioning of P and quality of refinements

Future work: improve partitioning strategy

1. Determine heuristics for finding a good initial partitioning of P
2. Extract information from failed model-checking problems to find a good split-up of the family of products in line 5 of Algorithm 1

? (difficult in particular for μ-calculus, since easily-interpretable feedback from its model checkers is generally missing so far)
Conclusions and future work

Introduced and compared feature-oriented μ-calculi with FTS semantics.

Resembles fLTL and fCTL by Classen et al., but μL_f is more expressive.

Translation to μL_{FO} allows family-based model checking multi-feature properties of configurable systems with off-the-shelf tools (e.g. mCRL2).

Defined a first (naive) family-based partitioning procedure for μL_f; its efficiency depends on initial partitioning of P and quality of refinements.

Future work: improve partitioning strategy

1. Determine heuristics for finding a good initial partitioning of P.
2. Extract information from failed model-checking problems to find a good split-up of the family of products in line 5 of Algorithm 1.

? (Difficult in particular for μ-calculus, since easily-interpretable feedback from its model checkers is generally missing so far.)
The quest for an efficient strategy

Execution of Algorithm 1 for deadlock freedom (φ₁) and with initial family \top (family characterised at node is conjunction of features along path from root)

Optimal partitioning strategy

Total computation time: 27.9
Computation time leaves: 8.4
(i.e. Mq, $\neg Mq$, and $\neg Ct$ nodes)
At once ∀ possible families: 2.07

Non-optimal partitioning strategy
(splitting Ln and $\neg Ln$, then optimal)
Total computation time: 45.0 (+60%)