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ABSTRACT
We introduce the feature-oriented language FLan as a proof
of concept for specifying both declarative aspects of prod-
uct families, namely constraints on their features, and pro-
cedural aspects, namely feature configuration and run-time
behaviour. FLan is inspired by the concurrent constraint
programming paradigm. A store of constraints allows one
to specify in a declarative way all common constraints on
features, including inter-feature constraints. A standard yet
rich set of process-algebraic operators allows one to specify
in a procedural way the configuration and behaviour of prod-
ucts. There is a close interaction between both views: (i) the
execution of a process is constrained by its store to forbid
undesired configurations; (ii) a process can query a store to
resolve design and behavioural choices; (iii) a process can
update the store by adding new features. An implementa-
tion in the Maude framework allows for a variety of formal
automated analyses of product families specified in FLan,
ranging from consistency checking to model checking.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods, Model checking, Validation

General Terms
Design, Experimentation, Verification

Keywords
Product families, Variability, Process algebra, Concurrent
constraint programming, Behavioural analyses, Maude

1. INTRODUCTION
Research on applying formal methods in SPLE tradition-

ally focusses on modelling and analysing structural rather
than behavioural constraints in product families. However,
many software-intensive systems are embedded, distributed
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and safety critical, making it important to be able to model
and analyse also their behaviour, as a form of quality as-
surance. Recent years have witnessed a growing interest
in specifically considering also the behavioural variability of
product families. This has resulted in variants of UML di-
agrams [32], extensions of Petri nets [27, 28] and a variety
of frameworks with transition system semantics [14, 20, 17,
22, 11, 3]. As a result, behavioural analysis techniques such
as model checking have become available for the verification
of (temporal) logic properties of product families.

Specifying a product family directly in an operational
model is often not feasible. Therefore it can be useful to
resort to high-level formal languages with semantics over
those operational models, as is common in the context of
process algebra. Several extensions of CCS [26] have been
proposed to model product families [15, 17, 18, 23], but none
of these can combine behavioural constraints with all com-
mon structural constraints known from feature models.

We introduce here the feature-oriented language FLan as
a proof of concept for specifying product families by taking
both structural and behavioural constraints into account.
It is inspired by concurrent constraint programming [29]
and its application in process algebra [7]. A store of con-
straints allows one to specify all common structural con-
straints known from feature models in a declarative way, in-
cluding inter-feature constraints (also called cross-tree con-
straints). Moreover, a rich set of process-algebraic operators
allows one to specify in a procedural way both the config-
uration and behaviour of products. FLan’s semantics thus
unifies static and dynamic feature selection.

The declarative and procedural views are closely related:
(i) the execution of a process is constrained by its store, e.g.
to avoid introducing inconsistencies; (ii) a process can query
a store to resolve configuration and behavioural options;
(iii) a process can update the store by adding new features.

Inspired by [15], we implemented FLan in the executable
modelling language Maude [12], whose rich toolkit enables
the application of a variety of formal automated analysis
techniques to product families specified in FLan, from con-
sistency checking to model checking.

The paper is organised as follows. Section 2 describes a
running example of a family of coffee machines. In Section 3,
we present the syntax and semantics of FLan and a spec-
ification of the example. Section 4 illustrates the Maude-
supported automated analyses of the example. We discuss
related work in Section 5, report some concluding remarks
in Section 6 and list promising future work in Section 7.
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2. A FAMILY OF COFFEE MACHINES
We use a popular running example in the style of [2, 3, 4,

5, 11, 15, 27, 28]. It describes a (simplified) family of coffee
machines in terms of the following list of requirements:

1. Initially, a coin must be inserted: either a euro, ex-
clusively for products for the European market, or a
dollar, exclusively for Canadian products;

2. Upon the insertion of a coin, a choice for sugar must
be offered, followed by a choice of beverages;

3. The choice of beverage (coffee, tea, cappuccino) varies,
but every product must offer at least one beverage,
tea may be offered only by European products, and all
products that offer cappuccino must also offer coffee;

4. Optionally, a ringtone may be rung after the delivery
of a beverage. However, a ringtone must be rung after
serving a cappuccino;

5. After the beverage is taken, the machine returns idle.

These requirements define products by combining structural
constraints defining valid feature configurations (e.g. “ev-
ery product must offer at least one beverage”) with temporal
constraints defining valid behaviour, i.e. action sequences
(e.g. “a ringtone must be rung after serving a cappuccino”).

3. FLAN: SYNTAX AND SEMANTICS
The feature-oriented language FLan we propose is loosely

inspired by the CCS-like process algebra CL4SPL presented
in [15], but it strongly differs in its treatment of inter-feature
constraints and in the separation of declarative and procedu-
ral aspects inspired by the concurrent constraint program-
ming paradigm [29] and its adoption in process calculi [7].

The core notions of FLan are features, constraints, pro-
cesses and fragments, which can all be identified in the syn-
tax of FLan given in Figure 1. More precisely, f and g range
over features and syntactic categories S, P and F correspond
to constraints, processes, and fragments, respectively.

Features. A feature is a term describing specific elements or
properties of a product. The universe of features is denoted
by F . The features of our running example are the coins ac-
cepted (i.e. euro and dollar), the products offered (i.e. coffee,
tea and cappuccino) and additional elements like sugar (the
capability to regulate the delivery of sugar) and ringtone
(the capability to emit a ringtone). Our approach is general
enough to accommodate all common notions of features [10].

Constraints. The declarative part of FLan is represented
by a store of constraints which defines both constraints on
features extracted from the product requirements and addi-
tional information (e.g. about the context wherein the prod-
uct will operate).

Two important notions of constraint stores are (i) the con-
sistency of a store S, denoted by consistent(S), which in our
case amounts to logical satisfiability of all constraints con-
stituting S; and (ii) the entailment S ` c of constraint c in
store S, which in our case amounts to logical entailment.

A constraint store is any term generated by S in the gram-
mar of FLan. The most basic constraint stores are > (no

F ::= [S ‖ P ]
S, T ::= K | f . g | f ⊗ g | S T | > | ⊥
P,Q ::= 0 | X | A.P | P +Q | P ;Q | P |Q
A ::= install(f) | ask(K) | a
K ::= p | ¬K | K ∨ K

where a ∈ A, p ∈ P and f, g ∈ F

Figure 1: The syntax of FLan

constraint at all), ⊥ (inconsistent) and ordinary boolean pro-
positions (generated by K). Constraints can be combined by
juxtaposition (its semantics amounts to logical conjunction).

We assume that the standard structural constraints on
features (like options, obligations and alternatives) are ex-
pressed using boolean propositions (e.g. as explained in [30]).
For this purpose, we assume that the universe P of proposi-
tions contains a boolean predicate has(f) that can be used
to denote the presence of a feature f in a product. Boolean
propositions can also be used to represent additional infor-
mation such as contextual facts. Examples from our running
example are in(Europe) and in(Canada), respectively used
to state the fact that the coffee machine being configured is
meant to be used in Europe or in Canada. Boolean proposi-
tions can state relations between contextual information and
features, like in(Europe)→ has(euro) (i.e. a coffee machine
for the European market needs a euro coin slot).

Cross-tree constraints, instead, are handled as first-class
citizens. A constraint f . g expresses that feature f requires
the presence of feature g while a constraint f ⊗ g expresses
that features f and g mutually exclude each other’s pres-
ence (i.e. they are incompatible). Of course, also these con-
straints can be encoded as boolean propositions. For in-
stance, f ⊗ g and f . g can equivalently be expressed as
has(f) ↔ ¬has(g) and has(f) → has(g), respectively. We
indeed use such logical encoding to reduce consistency check-
ing and entailment to logical satisfiability (and hence exploit
Maude’s SAT solver). However, we prefer to keep here this
first-class treatment in order to emphasise their use in the
presentation of our work.

We also consider a class of action constraints, reminiscent
of Featured Transition Systems [11]. However, while transi-
tions in FTSs are subject to the mere presence of features, in
our approach we associate arbitrary constraints to actions
rather than transitions. For instance, in a coffee machine
equipped with a slot for euro coins we will use euro for the
action of inserting a euro coin and do(euro) as a proposi-
tion stating the execution of that action. The relations be-
tween the action euro and the presence of the corresponding
feature euro can be formalised as do(euro) → has(euro),
i.e. the insertion of a euro coin requires the presence of an
appropriate coin slot. In general, we assume that each ac-
tion a may have a constraint do(a) → p. Such constraints
act as a sort of guard to allow or forbid the execution of ac-
tions (as illustrated later on in the discussion of rule Act).

The constraint store S in Figure 4 formalises part of the
requirements specified in Section 2 for our running example.
It contains both contextual information (e.g. in(Europe))
and action constraints (e.g. do(euro) → has(euro)). For
instance, from requirement 1 we extract that euro and dollar
are mutually exclusive features (formalised as dollar⊗euro),
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P +Q ≡ Q+ P P + (Q+R) ≡ (P +Q) +R
P |Q ≡ Q |P P | (Q |R) ≡ (P |Q) |R
P + 0 ≡ P P ; (Q;R) ≡ (P ;Q);R

0;P ≡ P P ; 0 ≡ P
P | 0 ≡ P P ≡ P [Q/X ] if X

.
= Q

Figure 2: Structural congruence in FLan

while from requirement 3 we understand that cappuccino
requires coffee (formalised as cappuccino . coffee).

Processes. The procedural part of FLan is represented by
processes. A process can be one of the following:

• 0, the empty process that can do nothing;

• X, where X is a process identifier. We assume that
there is a set of process definitions of the form X

.
= P .

We also assume that recursively defined processes are
finitely branching, which can be ensured in standard
ways (e.g. prefixing every occurrence of a process iden-
tifier X with an action or constraining process defini-
tions to be of the form X

.
= A.P );

• A.P , a process willing to perform the action A and
then to behave as P ;

• P +Q, a process that can non-deterministically choose
to behave as P or as Q;

• P ;Q, a process that must progress first as P and then
as Q;

• P |Q, a process formed by the parallel composition of
P and Q, which evolve independently.

It is worth remarking that we distinguish between ordinary
actions (from a universe A) and the special actions install(f)
(used to denote the dynamic installation of a feature f) and
ask(K) (used to query the store). We will see that each
action type is treated differently in rules of the operational
semantics.

In our example, we will consider the following actions:
euro and dollar (insertion of the respective coin); sugar
(sugar selection); coffee, tea, and cappuccino (beverage se-
lection); and ringtone (ringtone emission).

Fragments. Finally, a fragment F is a term [S ‖ P ], com-
posed by a store of constraints S and a process P . Each
of the components of a fragment may influence each other,
along the lines of the concurrent constraint programming
paradigm [29]: a process may update its store which, in
turn, may condition the execution of process actions.

The operational semantics of closed fragments (i.e. its re-
duction semantics) is formalised in terms of the state tran-
sition relation → ⊆ F × F defined in Figure 3, where F de-
notes the set of all terms generated by F in the grammar
of Figure 1. Technically, such reduction relation is defined
in Structural Operational Semantics (SOS) style (i.e. by in-
duction on the structure of the terms denoting a fragment)
modulo the structural congruence relation ≡ ⊆ F × F de-
fined in Figure 2. The reduction relation implicitly defines
an unlabelled transition system.

(Inst)
consistent(S has(f))

[S ‖ install(f).P ] −→ [S has(f) ‖ P ]

(Ask) S ` K
[S ‖ ask(K).P ] −→ [S ‖ P ]

(Act)
S = (S′ do(a)→ K) S ` K

[S ‖ a.P ] −→ [S ‖ P ]

(Or)
[S ‖ P ] −→ [S′ ‖ P ′]

[S ‖ P +Q] −→ [S′ ‖ P ′]

(Seq)
[S ‖ P ] −→ [S′ ‖ P ′]

[S ‖ P ;Q] −→ [S′ ‖ P ′;Q]

(Par)
[S ‖ P ] −→ [S′ ‖ P ′]

[S ‖ P |Q] −→ [S′ ‖ P ′|Q]

Figure 3: Reduction semantics of FLan

Considering terms up to a structural congruence allows us
to identify different ways of denoting the same fragment. We
consider the least congruence on fragments closed with re-
spect to the commutativity and associativity of non-determi-
nistic and parallel composition of processes; the associativity
of sequential composition of processes; the identity of non-
deterministic choice, sequential and parallel composition of
processes; and the expansion of recursive process definitions.
This choice of axioms (some of which may seem unusual) is
not accidental. Indeed, all can be naturally and efficiently
treated by Maude so that our semantics enjoys several nice
properties: (1) it is (efficiently) executable; (2) each seman-
tic rule of Figure 3 corresponds to exactly one conditional
rewrite rule in the Maude implementation of FLan; (3) the
number of reduction rules is small and the semantics and its
implementation are thus compact and easy to read.

As usual, reduction rules are expressed in terms of a (pos-
sibly empty) set of premises (above the line) and a conclusion
(below the line).

Rules Inst and Act are very similar, both allowing a pro-
cess to execute an action if certain constraints are satisfied.
In particular, rule Inst forbids inconsistencies due to the
introduction of new features. It can be seen as a particu-
lar instance of the rule for the tell operation of concurrent
constraint programming [29] instantiated as tell(has(f)).

Rule Act forbids inconsistencies with respect to action
constraints. A typical case of action constraint is do(a) →
has(f), i.e. action a is subject to the presence of feature f .

Rule Ask formalises the semantics of the usual ask(·)
operation as known from concurrent constraint program-
ming [29]. It allows a process to be blocked until a proposi-
tion can be derived from the store.

Rule Or is quite straightforward. It allows the process to
evolve as any of the branches. It is worth remarking that
non-determinism can be solved at the procedural level (by
relying on ask(·) actions) or at the declarative level (by using
a non-deterministic choice that may be solved by the con-
straint store), thus providing a lot of flexibility to fragment
designers (as illustrated later on).

Rules Seq and Par are standard. The former formalises
the usual sequential composition, while the latter formalises
an interleaving parallel composition.
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F
.
= [S ‖ D;R]

S
.
= S1 S2

S1
.
= has(euro) ∨ has(dollar)

in(Europe)→ has(euro)
in(Canada)→ has(dollar)
has(coffee) ∨ has(cappuccino) ∨ has(tea)
has(tea)→ in(Europe)
dollar ⊗ euro
cappuccino . coffee
do(euro)→ has(euro)
do(dollar)→ has(dollar)
do(sugar)→ has(sugar)
do(coffee)→ has(coffee)
do(cappuccino)→ has(cappuccino)
do(tea)→ has(tea)
do(ringtone)→ has(ringtone)

S2
.
= in(Europe)

has(euro)
has(dollar)

D
.
= install(sugar).0 | install(coffee).0 | install(tea).0

| install(cappuccino).0

R
.
= ( ask(in(Europe)).euro.0

+ ask(in(Canada)).dollar .0); (P2 + P3)

P2
.
= sugar .P3

P3
.
= coffee.P4 + tea.P4 + cappuccino.P5

P4
.
= P5 + R

P5
.
= install(ringtone).ringtone.R

Figure 4: Initial specification of the coffee machine

It is worth to note the different ways in which a feature f
can be selected in configurations. First, this can be done in
an explicit and declarative way by including the proposition
has(f) in the initial store. This would be the case of features
that the system designer is sure to be mandatory for all the
family’s products. Second, the presence of feature f can be
obtained in an implicit and declarative way, meaning that
f may be derived as a consequence of further constraints.
This would be the case of features that apparently seem not
to be mandatory to the system designer, but that are indeed
enforced by the constraints. For instance, in a store contain-
ing the constraints g .f and has(g) the presence of f can be
inferred. Third, feature f can be dynamically installed in a
procedural way during the execution of a process. This is a
key aspect of our approach as it enables the designer to delay
feature configuration decisions and to specify them procedu-
rally. The concurrent constraint approach of FLan allows
to combine these three declarative and procedural forms of
feature configuration in an elegant and consistent way.

Example. Figure 4 shows an initial comprehensive specifi-
cation of the coffee machine. Fragment F is composed by
store S and the sequential composition of two processes: D,
which specifies an initial configuration phase, and R, which
specifies the run-time behaviour of the coffee machine.

The store S is made of two parts: constraints derived from
the requirements specification (S1) plus some contextual in-
formation and initial configurations (S2). Note that the ac-
tion constraints are quite simple (all are of the form do(f )→

has(g)) but recall that they could be more sophisticated if
needed. For instance, one could specify the constraint on
action cappuccino as do(cappuccino) → has(cappuccino) ∧
has(ringtone) thus requiring not only the presence of the
corresponding feature but also that of the ringtone feature.

The configuration process D is quite simple. It is just
formed by the parallel composition of the installation of
some of the features that the coffee machine may exhibit.
This specifies a sort of race between features and may be
thought of as independent designers competing to install the
features they are responsible for. The semantics of FLan
ensures that all executions will end up with a consistent
configuration if the process begins with a consistent store.
For instance, the semantics will forbid the installation of
mutually exclusive features.

Process R describes the run-time operation of the coffee
machine. Depending on the country it is meant for, the
machine may either accept a euro or a dollar. After that, it
may (P2) or it may not (P3) be subject to a sugar regulation.
The next step is the beverage selection and delivery, which
may be followed by a ringtone (P5) or not, after which it
returns to its initial state.

It is worth noting that D and R are not pure configura-
tion and run-time processes. Indeed, feature ringtone is not
installed by D but by R, i.e. the feature ringtone is installed
dynamically and it can be thought of as, e.g., a software
module. This is an interesting example of a partial con-
figuration process, where some non-mandatory features are
not installed and products are only partially configured, and
a run-time configurable process that installs features when
needed.

In the next section, we will see that this specification has
some flaws that can be spotted with our implementation in
Maude. This will eventually lead to the corrected specifica-
tion following from the modified parts depicted in Figure 5.

4. MAUDE: AUTOMATED ANALYSES
In this section, we describe some automated analysis ac-

tivities supported by the implementation of our approach in
Maude’s formal environment.

We illustrate the use of some of the tools in what could
be a typical specification and analysis life-cycle of a prod-
uct family within our framework: (i) an initial constraint
store (capturing the feature constraints described in the re-
quirements) is specified and checked for consistency; (ii) a
configuration process is specified and executed step-by-step;
(iii) a consistency check is performed on all possible config-
urations allowed by the configuration process; and (iv) the
product behaviour is specified and checked with respect to
its requirements (that may include temporal requirements
in addition to feature constraints). We emphasise that this
is only an example. The tools and techniques we illustrate
can be combined and applied in many other ways.

Checking the (in)consistency of the initial constraints.
The store consistency check is implemented by a function
consistent that, given a constraint store, returns true if
the store is consistent and false otherwise. Moreover, a
function inconsistency(S) can be used to actually spot in-
consistencies in an inconsistent store. It returns the empty
set if applied to a consistent store and otherwise provides a
subset of inconsistent constraints of the store. This function
can be used to check, e.g., the consistency of the initial store
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F ′ .
= [S′ ‖ D′;R′]

S′ .
= S1 S

′
2

S′
2

.
= in(Europe)

D’
.
= install(euro).0 | install(dollar).0

| install(sugar).0 | install(coffee).0 | install(tea).0
| install(cappuccino).0

R’
.
= (euro.0 + dollar .0); (P2 + P3)

Figure 5: Final specification of the coffee machine

S presented in Figure 4 as follows.

reduce in ANALYSIS-KRIPKE : inconsistency(S) .
...
result neConstraints: has(dollar) has(euro)

dollar * euro

The Maude command reduce is used to evaluate the expres-
sion inconsistency(S) in the module ANALYSIS-KRIPKE.
The analysis spots the inconsistency of declaring the pres-
ence of two mutually excluding features (the euro and dollar
coin slots) by reporting the subset of the constraint store
formed by has(dollar), has(euro) and dollar ⊗ euro.1 There
were, of course, others, like the presence of both has(dollar)
and in(Europe) forbidden by in(Europe)→ has(euro).

We can fix this issue and produce a new initial store S′

(cf. Figure 5) in which the installation of euro and dollar is
delegated to the new configuration process D′, by invoking
install(euro).0 and install(dollar).0. Indeed, the latter will
not be executed, since it would make the store inconsistent.

We can verify the consistency of S′ as follows:

reduce in ANALYSIS-KRIPKE : consistent(S’) .
...
result Bool: true

The result confirms that the initial store S’ is consistent.

Executing the configuration process. Starting from a
consistent store, the user may want to specify and execute a
configuration process that ends up with a maximally config-
ured product. Consider for instance the initial store S′ and
the new configuration process D′ presented in Figure 4.

The Maude command rewrite can be used to execute the
fragment [S′ ‖ D′]. This command takes an expression as
input and applies rewrite rules until a fix point is reached.
In our case rewrite rules implement the operational rules of
the semantics.

rewrite in ANALYSIS-KRIPKE : ! [S’ | D’] .
...
result KFragment: ! [has(dollar) has(coffee)
has(tea) has(cappuccino) has(sugar) ... | 0]

The fragment runs until the underlying process becomes the
empty process resulting in a product configured with several
features (for reading purposes, the part of the store that
has not changed is abbreviated with ...). Clearly, such a
configuration is ensured to be consistent since it was derived
from a consistent store.

1In the Maude specification we use * to denote ⊗.

Checking the consistency of all configurations. FLan’s
semantics preserves consistency. Still we can use Maude’s
LTL model checker to check consistency of all reachable con-
figurations by specifying the property [] isConsistent, i.e.
consistency is an invariant. Here [] denotes the temporal
modality always (i.e.2) and isConsistent is a state predicate
that given a state (i.e. a fragment) [S ‖ P ] returns the result
of consistent(S). We can check the property as follows.

reduce in ANALYSIS-KRIPKE : modelCheck( ( ! [ S’ |
D’ ] ) , [] isConsistent ) .
...
result Bool: true

Note that the model checker is implemented as a function
so we have to use command reduce to invoke it. The re-
sult is true meaning that the formula is satisfied, i.e. no
inconsistent configuration is reachable.

Checking behavioural properties. After fixing the speci-
fication of the design we can analyse the run-time behaviour
of the product family. What we will do in the following is to
check properties of the entire product family. In general we
can perform checks of the form [S ‖ P ] |= φ (i.e. does [S ‖ P ]
satisfy the LTL property φ?). A positive result means that
the whole family specified by [S ‖ P ] satisfies the property.
A false result, instead, witnesses that at least one product
has at least one behaviour that does not satisfy property φ.
We can check, for instance, that the run-time behaviour does
not introduce inconsistencies as follows.

reduce in ANALYSIS-KRIPKE : modelCheck( ( ! [ S’ |
D’ ; R ] ) , [] isConsistent ) .
...
result Bool: true

The result confirms that consistency is preserved during the
run-time operation of the coffee machine.

The LTL model checker can also be used to check addi-
tional requirements, like temporal requirement 4 of our case
study (“a ringtone must be rung after serving a cappuccino”).

reduce in ANALYSIS-LTS : modelCheck( ( !
({do(’machine)}[S’ | D’ ; R]) ) , [] ({cappuccino}
-> <> {ringtone}) ) .
...
result Bool: true

The result confirms that a ringtone eventually follows (the
delivery of) a cappuccino.

We may however note that the conditional statement used
to accept a dollar or a euro is actually redundant due to the
introduced constraints. A possible, simpler run-time process
is R′ (cf. Figure 5). It is very much like R, but the condi-
tional statement has been replaced by a non-deterministic
choice that will be consistently solved at run-time due to
the presence of the action constraints do(euro)→ has(euro)
and do(dollar)→ has(dollar) in the store, which will forbid
the use of the actions euro or dollar if the corresponding
feature has not been installed. This time, contrary to what
we did earlier for the initial store and configuration process,
we are replacing procedural information by declarative infor-
mation. The resulting process preserves the above temporal
property, which can be checked as follows.

reduce in ANALYSIS-LTS : modelCheck( ( !
({do(’machine)}[S’ | D’ ; R’]) ) , [] ({cappuccino}
-> <> {ringtone}) ) .
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...
result Bool: true

The result confirms that consistency is still preserved during
the run-time operation of the coffee machine.

The above example analyses illustrate how the implemen-
tation of FLan in Maude allows us to exploit Maude’s rich
analysis toolset. In this respect, it is worth noting that in
the above analyses we have made use of only a limited num-
ber of Maude tools, namely its SAT solver, its reachability
analyser and its LTL model checker. There are several other
Maude tools whose use remains to be investigated.

5. RELATED WORK
There is an increasing body of research on how to success-

fully apply automated behavioural verification techniques,
like model checking, in the particular context of (software)
product families. The challenge, to the best of our knowl-
edge first recognised in [24, 25], is to develop formal and
modular modelling and verification approaches which specif-
ically take cross-cutting feature constraints into account. In
this section, we discuss a number of formal methods and
analysis techniques that have been applied in SPLE.

There are two well-known lines of research on modelling
product families in terms of extensions of LTSs, which both
define family behaviour as actions (features) and use ad-
vanced model-checking techniques for the verification of be-
havioural properties. One makes use of extensions of Modal
Transition Systems (MTSs) [14, 20, 22, 3], the other of Fea-
tured Transition Systems (FTSs) [11].

Modal Transition Systems. MTSs [21] were recognised as
a suitable behavioural model for describing product families
in [14]. A fixed-point algorithm, implemented in a tool,
is defined to check whether an LTS conforms to an MTS
with respect to several different branching relations. In the
context of SPLE, it allows one to check the conformance of
the behaviour of a product against that of its product family.

VMC (http://fmt.isti.cnr.it/vmc/) [4, 5] is a tool for
modelling and analysing behavioural variability in product
families modelled as MTSs [3]. VMC thus accepts a product
family specified as an MTS, possibly with additional vari-
ability constraints, after which it allows the user to interac-
tively explore this MTS; efficiently model check properties
(branching-time temporal logic formulae) over an MTS; vi-
sualise the (interactive) explanations of a verification result;
automatically generate one, some, or all of the family’s valid
products (represented as LTSs); browse and explore these;
efficiently model check whether or not products (one, some,
or all) satisfy certain properties; and, finally, help the user
to understand why a certain valid product does or does not
satisfy specific verified properties, by allowing such a prod-
uct to be inspected individually.

Featured Transition Systems. An FTS [11] is a doubly la-
belled transition system with an associated feature diagram.
Its states are labelled with atomic propositions, while a spe-
cific distinction among its transitions is obtained by an edge-
labelling defining which transitions refer to which features.

SNIP [9] is a model checker for product families modelled
as FTSs specified in a language based on that of the SPIN
model checker (http://spinroot.com/). Features are de-
clared in the Text-based Variability Language (TVL) and

are taken into account by the explicit-state model-checking
algorithm of SPIN for verifying properties expressed in fLTL
(feature LTL) interpreted over FTSs (e.g. to verify a prop-
erty over only a subset of the set of all valid products). Ex-
haustive model-checking algorithms (which continue their
search also after a violation was found) moreover allow the
user to verify all products of a family at once and to output
all of the products that violate a property. Unlike VMC,
SNIP is a command-line tool without a GUI. SNIP, how-
ever, treats features as first-class citizens, with built-in sup-
port for feature diagrams, and it implements model-checking
algorithms specifically tailored for product families.

In this paper, we proposed to specify product families in
a high-level formal process-algebraic language, FLan, which
has transition systems as semantic domain. While, in prin-
ciple, product family behaviour could be directly specified
using transition systems from a practical point of view it is
more convenient to resort to some more intuitive linguistic
formalism. In fact, when used as a specification formalism,
transition systems are too low level and, above all, suffer
from the lack of compositionality—in the sense that they
offer no means for constructing the transition system of a
(sub)family in terms of that of its components. On the con-
trary, the process-algebraic linguistic terms offered by FLan
are more intuitive and concise notations. Using them, prod-
uct families can be built in a compositional way.

Like the approach based on FTSs, we thus use a high-level
language for modelling, treating features as first-class citi-
zens, and a transition system semantics for analysis. While
we currently use Maude for the automated verification of be-
havioural properties of product families specified in FLan,
in the future we hope to make their semantic models (LTSs,
basically) amenable to model checking with VMC. FLan is
loosely inspired by the CCS-like process algebra CL4SPL
presented in [15]. Unlike FLan, however, CL4SPL has no
language constructs for inter-feature constraints nor a store
of constraints to separate the declarative aspects of a prod-
uct family from its procedural aspects.

Adaptive Featured Transition Systems. A closely related
variant of FTSs are Adaptive Featured Transition Systems
(A-FTS) [13] which were introduced for the purpose of model
checking adaptive software (with a focus on software prod-
uct lines). The main differentiating characteristic of A-FTSs
is that the set of active features varies dynamically: fea-
tures can also be deactivated, which is not possible in FLan
where we chose to guarantee monotonicity in feature acti-
vation. On the other hand, the action constraints of FLan
share some similarities with other adaptation mechanisms
like those of context-oriented programming discussed and
compared in [6]. To sum up, FLan may also be seen as a
language for specifying adaptive systems, which combines
features (in a less flexible way than A-FTSs) and context
variations.

Feature-aware verification. Tool suite SPLverifier [1]
uses standard off-the-shelf model-checking techniques to ver-
ify the absence of feature interactions by means of an ap-
proach called feature-aware verification. To this aim, the
AutoFeature automata language for specifying features
in separate and composable units was developed, while a
variant of abstract syntax trees, called Feature Structure
Trees (FSTs), forms the basis for encoding the variability.
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SPLverifier offers two methods: a brute-force one gener-
ates and verifies all valid products, while an alternative one
avoids the generation of all individual products as it verifies
all possible feature combinations on a single product that is
purpose-built to contain all the family’s features. Like SNIP
and FLan, features are central to SPLverifier, but only
the (renowned) problem of detecting feature interactions is
addressed. Unlike VMC, SNIP and FLan, behavioural vari-
ability is not considered.

Process-algebraic approaches. A process-algebraic the-
ory for the modelling and analysis of product families was
developed also in [17, 18, 23]. PL-CCS extends CCS by
a variant operator that allows the user to model alterna-
tive behaviour in the form of alternative processes, with the
meaning that only one of the alternative processes will exist
at run-time. PL-CCS has an SOS semantics defined over
multi-valued MTSs. To reason on the behaviour of prod-
uct families specified in PL-CCS, a multi-valued version of
the modal µ-calculus is defined, i.e. the interpretation of a
logic formula over a product family no longer yields true or
false, but rather a set of configurations characterising exactly
those products of the family which satisfy the behavioural
property under verification. Unlike FLan, PL-CCS how-
ever does not cater for inter-feature constraints. Also, the
analysis is limited to verification by model checking which
is moreover not implemented.

Petri net-based approaches. The same idea underlying
FTSs, namely to explicitly label the transitions of an LTS
with the set of features (i.e. products) for which the transi-
tion is available, was also applied to Petri nets in [27, 28],
resulting in feature (Petri) nets. Larger feature nets can
be constructed from smaller ones to model the addition of
new features to a product family, while correctness crite-
ria can ensure that the resulting composition preserves the
original behaviour. An extension can capture the dynamic
reconfiguration of products by associating to each transition
of a feature net also an update expression that describes
how the feature selection evolves after firing (executing) the
transition. The resulting feature reconfiguration model may
remain disconnected from the ordinary behavioural model,
thus offering orthogonality but at the same time allowing the
reconfiguration to depend upon the underlying behaviour
and vice versa. This has some similarities with the com-
bination of declarative and procedural views that is at the
heart of FLan. Efficient formal analysis and verification
techniques from Petri nets of course become available to
feature nets, but their application in the specific context of
product families has not yet been studied.

In [31], FTSs are translated into so-called adaptable fea-
tured Petri nets, after which projection and reachability
techniques from Petri nets become available for product
derivation and liveness analysis.

Other approaches. In [19], FTSs (including their associ-
ated feature diagrams) are translated into Maude specifica-
tions by graph transformation. Starting from a set of re-
quirements, this means that first a feature diagram needs
to be extracted (to model the variability) and only then the
desired run-time behaviour can be specified (as an FTS).
FLan, on the contrary, allows the user to combine the spec-
ification of design and run-time processes directly from a

given set of requirements, which may be very convenient, for
instance to specify the behaviour of partially configured or
run-time configurable products. Another difference is that
the semantic foundation of our approach is based on tech-
niques from concurrent constraint programming and process
algebras rather than graph transformation.

In [16], a feature-oriented approach to modelling prod-
uct families in Event-B by means of a chain of refinements
is explored by applying existing Event-B (de)composition
techniques to two case studies, using a prototypical feature
composition tool. Behavioural variability is not considered,
but it would be interesting to explore the feasibility of using
this Feature Event-B as a high-level specification language
on top of one of the aforementioned semantic models.

6. CONCLUDING REMARKS
We have introduced the feature-oriented language FLan

as a proof of concept for specifying and analysing both de-
clarative and procedural aspects of product families. Its se-
mantics neatly unifies static and dynamic feature selection.

We do not envisage FLan to become the feature-oriented
language, but we advocate that some of its features are very
convenient and may be adopted by existing languages.

First, we think that the concurrent constraint program-
ming paradigm provides a flexible mechanism for separating
and (when necessary) combining declarative and procedu-
ral aspects. For instance, design decisions can be delayed
until run-time, which is very convenient for software prod-
uct families where features may be added while the system
operates. Furthermore, the run-time specification can be
discharged from design decisions such as feature constraints
thus resulting in light-weight, understandable specifications.

Second, the implementation of FLan in Maude allows one
to exploit the rich analysis toolset of this framework. In this
paper, we have essentially restricted ourselves to its SAT
solver, its reachability analyser and its LTL model checker.
However, there are other Maude tools whose use may be
worth investigating. The statistical model checker PVeSta,
for instance, could be used for evaluating the performance
of product families in variants of FLan with stochastic and
quantitative aspects.

7. FUTURE WORK
We envisage several potentially interesting extensions of

FLan. For one, we can adopt further primitives and mech-
anisms from the concurrent constraint programming tradi-
tion. The concurrent constraint π-calculus [7], for instance,
provides synchronisation mechanisms typical of mobile cal-
culi (i.e. name passing), a check operation to prevent in-
consistencies, a retract operation to remove (syntactically
present) constraints from the store and a general framework
for soft constraints (i.e. not only boolean). Such features
have been shown successful for the specification of service
level agreements and negotiation processes [8]. This may
thus turn out to be useful when product families are to be
designed by cooperating partners and are hence subject to
negotiation mechanisms.

Another promising line of research is to provide an FTS
and an MTS semantics of FLan so that (i) FLan becomes
a high-level language for those semantic models and (ii) we
can exploit the specialised analysis tools developed for them.
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