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Abstract. Despite some work on testing software product lines, main-
taining the quality of products when a software product line evolves is
still an open problem. In this paper, we propose a novel assume-guarantee
testing approach as a solution to the following research question: how
can we verify the correct functioning of products of an software product
line when core components evolve? The underlying idea is to retest only
some of the products that conform to the software product line architec-
ture and to infer, using assume-guarantee reasoning, the correctness of
the other products. Assume-guarantee reasoning moreover permits the
retesting of only those components that are affected by the changes.

Keywords: Assume-guarantee testing, Evolving software product lines,
Software testing, Compositional verification.

1 Introduction

Software product line engineering makes use of different components to describe
and realize families of systems, such as requirements, architectural and design
models, and implementation components [1, 2]. The architecture of a software
product line is typically referred to as a software product line architecture and it
is meant to define the common reference architecture for the products that are
related to a specific family. Variability is achieved by identifying variation points
as places in the product line architecture where specific decisions are reduced
to a choice among several features , but the feature to be chosen for a particular
product variant is left open (due to optional, mandatory or alternative features).

For enterprises from safety-critical domains, such as avionics, the application
of software product line engineering technology is often problematic because
of the high costs of certification efforts. In such domains, every product has
to pass a costly certification stage, even if it belongs to an established family
of products for which certification efforts have already been performed. It is
therefore important to reduce the effort needed to retest modified products. By
predicting the impact of evolution of an software product line, we might be
able to avoid re-certification of certified products that have evolved. This cannot
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solve the issue of repeated certification in a product line altogether, since testing
one product of a family in general does not provide any guarantee for another
product of the family. A possible solution, however, is to investigate how testing
and variability can be combined to selectively test only components actually
affected by the evolution.

In [3], we proposed a first step towards a solution to this problem by reusing,
adapting and combining state-of-the-art techniques. We found assume-guarantee
reasoning well suited for evolving systems. The environment of a component is
seen as a set of properties, called assumptions, that should be satisfied for it to
function. If these assumptions are satisfied by the environment, then components
in this environment will typically satisfy other properties, called guarantees. By
appropriately combining the assume and guarantee properties, it is possible to
prove the correctness of an entire system before actually constructing it.

The idea we presented was thus to annotate components of a product line ar-
chitecture with pairs of assume-guarantee properties, considering a component’s
environment as the composition of the remaining components. In this way, we
enabled compositional verification based on assume-guarantee reasoning to deal
with evolution in product line architectures. The underlying idea is to decom-
pose a system specification into (asssume-guarantee) properties that describe the
behavior of a system’s subset, to model check these properties locally, and to
deduce from the local checks that the complete system satisfies the overall spec-
ification. The main advantage is that one never has to compose all subsystems,
thus avoiding the state explosion problem. On the downside, assume-guarantee
verification by means of model checking cannot scale to the size of industrial
systems (as remarked in [4]).

For this reason, we envision the use of software testing for verifying evolving
product line architectures. While many approaches to validate software product
lines and their products in a cost effective way by exploiting similarities among
products and using proper variability management have been proposed [5–15],
we know of only a few approaches that investigate how to retest the resilience
of products when a software product line evolves [16, 17].

After analyzing state-of-the-art techniques for verifying and validating soft-
ware product lines, in this paper we present a preliminary approach to retest
the resilience of products of a software product line by properly extending and
adapting assume-guarantee reasoning to evolving software product lines. The
main goal is to permit selective (re)testing of assume-guarantee properties on
only those components and products of the software product line that are actu-
ally affected by the evolution.

Section 2 recalls the problem that drives our research effort. Section 3 presents
background information on assume-guarantee reasoning and assume-guarantee
testing. Section 4 presents our proposed solution for assume-guarantee testing
of evolving software product lines. Section 5 briefly reports on related work on
regression testing of software product lines, while Section 6 concludes the paper
outlining some future work on our wish list.
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2 Problem Setup

We recall the research problem that we set up in [3]: how to guarantee the
correct evolution of a software product line upon changes in components of its
underlying product line architecture. We illustrate the problem in Fig. 1, based
on the following example that is originally due to Paul Clements et al. at the
Software Engineering Institute:

“I run the same software in different kinds of helicopters. When the soft-
ware in a helicopter powers up, it checks a hardware register to see what
kind of helicopter it is and starts behaving appropriately for that kind of
helicopter. When I make a change to the software, I would like to flight
test it only on one helicopter, and prove or (more likely, assert with high
confidence) that it will run correctly on the other helicopters. I know I
can’t achieve this for all changes, but I would like to do it where possible.”

In a software product line context, this example can be re-phrased as: assuming
various products (helicopters) have been derived from a software product line,
which have moreover been formally certified, what can be concluded for new
products obtained from the software product line by modifying one or more core
components?

We assume that all products of the product line must be guaranteed to con-
form to a specific standard. Furthermore, we assume that there is a policy accord-
ing to which any change to a core component requires all products containing
that core component to be rebuilt. The question is whether it is necessary to
re-validate all the products of the software product line or whether a subset
can suffice. For instance, in the aforementioned example, when we change the
software of the helicopter line, such as installing a new kind of radio across the
fleet, we would like to flight test it only on one helicopter and assert with high
confidence that it will run correctly on the other helicopters. In this paper we
concentrate on modifications that are the result of changing, adding or removing
components, but not their connections.

3 Assume-Guarantee Reasoning and Testing

Compositional verification is thus based on decomposing the system specification
into a set of properties each of which describing the behavior of a system’s
subset. In general, checking local properties over subsystems does not imply
the correctness of the entire system. This is due to the existence of mutual
dependencies among components. More precisely, each single component cannot
be considered in isolation but must be considered as behaving and interacting
with its environment (i.e., the rest of the system).

Assume-guarantee reasoning is one of the most promising approaches pro-
posed for compositional reasoning. It was originally introduced in the Ph.D. the-
sis of Cliff Jones [18] and in the context of temporal logic by Amir Pnueli [19].
Assume-guarantee reasoning considers both components and the environment
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Fig. 1. The helicopter certification problem

they interact with. The environment is described a set of properties that should
be satisfied for it to correctly interact with the components. These properties
are the assumptions that the component makes on the environment. If they
are satisfied by the environment, then the component behaving in this environ-
ment usually satisfies other properties, the guarantees. As said before, a system
can sometimes be proved correct without actually constructing it through the
appropriate combination of assume and guarantee properties.

We use Pnueli’s notation to state that if the environment of component M
satisfies logic formula ϕ (i.e., ϕ is the assumption that M makes about the
components it interacts with), then in that environment M satisfies ψ (i.e., M
guarantees ψ):

〈ϕ〉 M 〈ψ〉
Pnueli’s classical reasoning chain then becomes:

〈 〉 M 〈ϕ〉 〈ϕ〉 M ′ 〈ψ〉
〈 〉 M ·M ′ 〈ψ〉

in which ‘·’ is a suitable composition operator. This reasoning chain should be
interpreted as follows: if M , with no assumption on its environment, satisfies
ϕ, and M ′, over an environment that satisfies ϕ, satisfies ψ, then without any
assumption on its environment M ·M ′ satisfies ψ. In this paper, we consider M
and M ′ to model component behaviors and ϕ and ψ to be formulae expressed
in Linear Temporal Logic.



Assume-Guarantee Testing of Evolving SPL Architectures 95

As witnessed by [20], the main difficulties of applying assume-guarantee rea-
soning are (i) generating the assumptions and (ii) decomposing a system into
subsystems with the purpose of efficiently verifying general system properties.
Therefore, in [21] three main dimensions to be considered when dealing with
assume-guarantee reasoning were identified:

1. The composition operator should be carefully selected and has to be associa-
tive. It defines a system and properties decomposition and this is fundamental
in order to correctly work with the reasoning chain;

2. The assumptions generation technique is fundamental for assuring effective
assume-guarantee reasoning;

3. The language used to specify the system and that used to specify the assume-
guarantee properties are crucial. Semantic relationships between these two
languages (if they differ) are fundamental to make the assumption generation
process fully automatic.

The authors of [22] introduce a framework for performing assume-guarantee
reasoning in an incremental and fully automatic fashion. More specifically, the
approach automatically generates via a learning algorithm assumptions that the
environment needs to satisfy for the property to hold. These assumptions are
initially approximate, but become gradually more precise by means of coun-
terexamples obtained by model checking the component and its environment.
In [23], the authors observe that in reality a component is only required to
satisfy properties in specific environments. Inspired by these motivations, they
generate assumptions that characterize exactly those environments in which the
component satisfies its required property.

Assume-guarantee testing has been proposed as a technique to complement
assume-guarantee model checking, to be used for the verification of components’
implementations [4]. While formal verification with assume-guarantee testing in-
creases scalability when compared to traditional formal verification techniques
such as model checking, it may still be unfeasible when applied to the imple-
mentation of large-scale industrial systems. For this reason, Giannakopoulou et
al. proposed in [4] an approach that, after applying assume-guarantee formal ver-
ification at the design level, uses assume-guarantee information to test whether
the components’ implementations continue to satisfy the assumptions. In affir-
mative cases, this will show that there is no incompatibility between the design
models and their implementations. The main advantages of assume-guarantee
testing rely on the possibility of detecting violations with a higher probability
than in the case of traditional testing, avoiding state explosion problems that
typically arise when combining components, and with the same coverage as that
of traditional systems — but with fewer tests.

More formally, consider a system S in a possibly empty context E. Let S be
composed of n components C1, C2, . . . , Cn

1. The idea is to produce for each Ci,
with 1 < i < n, both Gi and Ai, representing respectively the local requirements
that Ci has to guarantee and the assumptions that characterize the context

1 Here the term component is used as a synonym of part.
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in that point. In other words, each component Ci will guarantee property Gi

whenever its context satisfies assumption Ai.
Next consider two components C1 and C2 (but the reasoning can straightfor-

wardly be extended to a multitude of components) and two implementations I1
and I2 of these components, respectively. After having validated with assume-
guarantee model checking that C1 · C2 satisfies a property ψ, we subsequently
want to test whether I1 · I2 still satisfies ψ. The idea for doing so is to check this
separately, via unit testing, for the two component implementations 〈ϕ〉 I1 〈ψ〉
and 〈 〉 I2 〈ϕ〉. Assume-guarantee testing is then run according to the following
three steps:

1. The assumption ϕ is used to restrict the execution of the component I1 when
producing test traces. This means that sets of test traces T1 and T2 are pro-
duced from I1 composed with an implementation of ϕ, and from I2 composed
with an implementation of the universal environment, respectively;

2. The resulting traces are individually checked against the appropriate assume-
guarantee premise. Thus, each trace in T1 is checked against ψ, and each trace
in T2 is checked against ϕ, individually, without requiring the construction
of all the interleavings of the two components’ implementations;

3. If either of these above checks fails, then there is an incompatibility between
the components’ models and their implementations that needs to be fixed.
Otherwise, I1 · I2 |= ψ.

Assume-guarantee testing is still testing, i.e. it lacks exhaustive coverage. How-
ever, as said before, assume-guarantee testing has the potential of checking more
system behaviors with the same amount of coverage as traditional testing.

4 Assume-Guarantee Testing of Evolving Software
Product Line Architectures

While we have seen that a lot of research efforts have been devoted to software
product line testing [17, 24–26, 13], limited research has been conducted on how
to test evolving software product lines (some research that has been carried out
is discussed in Section 5). The solution we propose below combines the principles
of traditional regression testing, in the context of evolving software product line
architectures, with the use of assume-guarantee reasoning. As the architecture
of the software product line plays a central role in our approach, the latter can
thus be considered architecture-centric.

Figure 2 contextualizes our work: all components used in the original prod-
uct line architecture of the software product line of interest (i.e., A, B, C, D
and E) are enriched with assume and guarantee properties. These assumptions
can automatically be calculated by extending the approach presented in [23] to
software product line architectures.

The configuration of the product line architecture (i.e., the way components
are instantiated, selected, and connected) provides context to the assumptions
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Fig. 2. The original software product line architecture (PLA) and the evolved one,
including the product architectures (PAs) of their derived products

and guarantees: given a component C with its assume-guarantee pair, its en-
vironment becomes the subarchitecture connected with C. What is challenging
in assume-guarantee reasoning in the context of product line architectures is
that the reasoning is performed on the product line architecture, including all
variation points, rather than on each single concrete product — or better, on
the architecture of each single product. This means that the assumptions will
have to be calculated in a smart way, taking into account the commonalities and
variability among the components.

Once a component evolves, this modification is expected to have an impact on
a number of product architectures, namely each one that contains the modified
component. For instance, consider that component B evolves into B′ (cf. Fig. 2).
Then the assume-guarantee pairs of both B and B′ will have to be checked.

In such a context, our solution envisions a combination of regression testing
and assume-guarantee testing in the context of evolving product line architec-
tures. Conceptually, this requires us to better understand two issues.

First, we need to understand how to extend the assume-guarantee testing ap-
proach proposed in [4] to evolving (product line) architectures. In [4], in fact, the
assume-guarantee pair associated to each component in the architecture is used
to generate component-specific testing traces. These traces, when adequately
evaluated against the appropriate assume-guarantee premise, can demonstrate
whether the composition of components can produce failures. Assuming that a
product (line) architecture has been tested, the challenge becomes how to apply
assume-guarantee reasoning for regression testing of the modified product (line)
architecture (cf. (1) and (2) in Fig. 2).

Second, we need to understand how to use the relationships between a product
line architecture and its derived product architectures (cf. (3) in Fig. 2) in order
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to be able to apply regression testing to the evolved product architectures (cf. (4)
in Fig. 2).

Summarizing, we envision what we call a double regression testing approach,
in which an evolved product (e.g., PA3′ in Fig. 2) can be tested not only based on
how it regressed from an original product (i.e., PA3 in Fig. 2) but also based on
its relationship with the architecture of its product family (i.e., PLA′ in Fig. 2).

The remainder of this section is organized as follows. In Section 4.1, we present
the assume-guarantee testing approach from [4] adapted and extended to work
with product line architectures, while Section 4.2 describes the strategy followed
to select the product architectures that — once retested — can minimize the
retesting of other product architectures.

4.1 Applying Assume-Guarantee Testing to Evolving Product Line
Architectures

In this section, we describe how to adapt the assume-guarantee testing approach
presented in [4] (and recalled in Section 3) to evolving product line architectures.
We initially explain how to adapt the assume-guarantee testing approach to
evolving architectures, and subsequently how this approach can be extended to
evolving product line architectures.

Assume-Guarantee Testing Applied to Evolving Systems

Consider a system S that is decomposed into n components C1, C2, . . . , Cn. As-
sume that for each Ci, with 1 < i < n, a pair of assumptions Ai and guarantees
Gi is available. As said before, the assumptions can automatically be calculated
by a suitable assumption generation function defined over the considered lan-
guage (e.g., the L∗ learning algorithm defined in [23]).

Now set Ci as the component that is affected by a change and that is substi-
tuted by Cx. According to the approach presented in [21], the changes’ correct-
ness can be checked locally over the changed component(s). In case component
Cx can substitute Ci without consequences (i.e., the assume-guarantee pairs Ax,
Gx and Ai, Gi match), then the properties guaranteed by Ci are also guaranteed
by Cx and no retesting is needed. This case provides an extraordinary advan-
tage with respect to traditional (non compositional) verification approaches,
where local changes have to be checked against the entire system. On the other
hand, when component Cx cannot substitute Ci without consequences (i.e., the
assume-guarantee pairs Ax, Gx and Ai, Gi do not match), then the assume-
guarantee reasoning chain my help understand the effect of a change.

In fact, since the components composing the system S are organized as a chain
of assumptions and guarantees (through which the composition of the system
is realized), assume-guarantee reasoning enables an immediate understanding
of how local changes affect the entire system, without applying traditional im-
pact analysis approaches. Again, this facilitates (and potentially automates) the
regression testing analysis of evolving systems.
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Assume-Guarantee Testing Applied to Evolving Product Line
Architectures

In order to extend the assume-guarantee regression testing approach outlined
in Section 4.1 to product line architectures, it becomes particularly important
to consider the commonalities and variability in product line architectures and,
more specifically, normal, optional and variant components. Below we present
in detail the way in which the approach of Section 4.1 has to be reconsidered in
the case of such components.

Normal or Optional Component. When a component C has to be substituted
with a component C′, there are two possible cases:

1. The pair of assumptions and guarantees of C′ matches the assumptions and
guarantees of C and thus no re-verification is needed.

2. The pair of assumptions and guarantees of C′ does not match that of C. This
may impact only a part or, in the worst case, the entire chain. To measure
the impact, we check whether an environment exists for C′ such that the
guarantee of C can be satisfied. If it does, then the chain allows to check
if the component that should match this assumption with its guarantee is
analyzed. This reasoning is iterated until each incongruence in the assume-
guarantee chain has been resolved. If, on the other hand, no such environment
exists for C′, then we have to also analyze the right side of the chain.

Variant Component. Let D be an abstract variant component with n variants
D1, D2, . . . , Dn. When a variant Di evolves in D′

i, a reasoning similar to the
one made for normal and optional components must be performed. In addition,
however, we have to consider that Di was a variant of D and therefore also D′

i

should be a variant ofD. This means that the pair of assumptions and guarantees
of D should hold also for D′

i. If this is indeed the case, then the chain in which
D is involved does not require changes. Otherwise, even the assumptions and
guarantees of D have to be updated and the changes must be propagated by
suitably recalculating all involved assume and guarantee properties in the chain.

Adding or removing a component in a product line architecture requires a
reasoning similar to the one we just outlined for substitution. We can have
an optimal integration or removal, meaning that no assumptions and guarantees
must be recalculated (such as the removal of an optional component). In general,
however, assumptions and guarantees must be recalculated (and in the worst
case, the entire chain must be recalculated).

The next step is to apply the assume-guarantee testing approach. When ap-
plying assume-guarantee testing in the context of evolving product line architec-
tures, the assume-guarantee testing process presented in [4] has to be applied as
follows: we initially apply assume-guarantee reasoning at the level of the product
line architecture in order to analyze the conformance of product architectures to
assume-guarantee properties. Successively, we apply assume-guarantee testing to
check the conformance of the implementation of the product architecture with
respect to the its specification (exactly as proposed in [4]).
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When the product line architecture evolves, we first need to identify the prod-
uct architectures that should be retested. As we will explain in Section 4.2, it
is important to appropriately select the product architectures to be retested
since the selection strategy can impact the number of tests to be performed on
other product architectures. Once the product architectures to be retested have
been selected, we have to apply the assume-guarantee strategy described above
to reassure the conformance of each such product architecture to the modified
product line architecture (or to evolve the product architecture in accordance to
the changes). Subsequently, we again apply assume-guarantee testing to check
the conformance of the implementation of the product architecture with respect
to its specification (exactly as proposed in [4]). Finally, we need to reselect a
subset of test traces for those components that need to be retested. Existing
test traces for the component implementation have to be modified only when
the assume-guarantee properties of its component specification C have changed.
New test traces have to be added for all the new components added to the
product architecture.

As far as automation is concerned, in this paper we consider both the archi-
tectural models and the implementations to be represented (at different levels of
abstraction) by labeled transition systems. As a result, the Labelled Transition
System Analyser2 as described in [23] becomes an ideal candidate tool to be
extended in order to cope with test traces generation. Such a setting is inherited
from [4] and can be applied when detailed models are constructed through the
refinement of more abstract models.

4.2 Testing Strategy: Selection of Products to Retest

The main strategic decision we need to make in order to apply the proposed
double regression testing approach is the choice of the products that need to
be retested and the test sets. The apparently most useful information we have
at hand is the so-called feature model of the software product line, the original
product (line) architecture and the previous tests. By making intelligent use of
the commonalities and variability inherent to the software product line, we can
select both the products that need retesting and a set of test cases from the
existing ones. Ideally, this allows us to avoid having to retest all products and
to rerun all test cases.

A feature model has become the de facto standard variability model in software
product line engineering. It provides a compact representation of all products
of a product family in terms of their features, and additional constraints among
them. Graphically, features are represented as the nodes of a tree, with the family
as its root and relations between these features representing constraints. The
first three relations below form the tree, while the latter two model additional
constraints:

2 http://www.doc.ic.ac.uk/ltsa/

http://www.doc.ic.ac.uk/ltsa/
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Optional features may (but need not) be present only if their parent is present;
Mandatory features are (have to be) present if and only if their parent is

present;
Alternative features are such that only one is present if their parent is present;
Requires is a unidirectional relation indicating that the presence of one feature

requires that of the other;
Excludes is a bidirectional relation indicating the presence of two features to

be mutually exclusive.

From a feature model we can thus extract all necessary information on the rela-
tionships between features, such as which features exclude each other and which
are optional. By analyzing the features that are involved in the component that
has evolved, we can obtain useful information on the impact on other features.
From the product line architecture we know which product architecture contains
the component that has evolved. Combining this information, we can thus select
the product architecture that needs to be retested and appropriately adjust the
test sets. In a similar way, in [27] it is shown that the addition/modification of
so-called conservative and regulative features in a software product line requires
only a subset of the new products to be model checked.

To make this more concrete, consider once more Fig. 2. Component B has
evolved in component B′ and this component is part of three product archi-
tectures, among which PA3. Now we inspect the feature model regarding the
features that are present in B and B′, and in particular regarding their differ-
ence. If, for instance, B′ contains a feature f that B did not, then we need to
inspect the feature model for the features that are related with f . If the feature
model states that the inclusion of f in a product excludes the presence of a fea-
ture g, for instance, then we need to inspect the product architectures of which
B′ is part to see whether or not the other components contain g. Moreover, we
need to add the exclusion of g to the assumptions that B′ makes on the envi-
ronment (in addition to the assumptions inherited from B). Similar reasonings
can easily be imagined in case B′ contains less features than B or exactly the
same features as B. Likewise, a related reasoning applies to the cases in which
the feature model states that f requires a feature g and/or other relationships.

5 Related Work

Software product line testing consists of using product line artifacts (e.g., re-
quirements, architectures, code with variability) or artifacts of products derived
from a software product line, to select test suites enabling the validation of a
software product line and of its derivable products. During software product
line testing at least two main (and opposite) dimensions need to be considered:
testing the core components present at the domain engineering level (i.e., testing
the software product line artifacts) and testing the products derivable from the
product line during application engineering (i.e., testing the product that is part
of a software product line).
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Testing product lines during domain engineering means testing the software
product line based on all the artifacts common to the product line (e.g., software
product line testing based on domain-level requirements, design, and realized
components). The opposite dimension means testing the single products that
can be obtained during application engineering. At this stage, the main goal is
to test the variety of products obtained by assembling core and domain-specific
components, possibly written in different programming languages, distributed
across the network and executed in various platforms. Other techniques use a
mix of product and product line information in order to derive a testing campaign
(as discussed in the systematic study in [17]).

Several software product line testing approaches have been proposed so far
in the literature, many of which use software product line requirements (with
explicit variability modeling) for selecting requirements-based test suites, while
most of the approaches use models (of the requirements or of the architecture)
defined formally or semi-formally for the derivation of test cases. A problem
common to all approaches is the number of test cases to consider, which obviously
increases exponentially with the number of features of the software product line
(cf. [13] for an overview and comparison of several scalable testing techniques
that aim at reducing the number of products to be tested, among which so-called
combinatorial interaction testing).

Since the focus of this paper is on evolving software product lines, the work
most closely related to our research is that on software product line regression
testing, which aims to minimize the effort to retest a software product line when
components change. The most advanced regression testing approach for software
product line architectures can be found in [16], in which three different software
product line evolution scenarios and a regression testing approach for software
product lines are described. By considering a regression testing strategy RT
that takes as input two versions of the same component, three scenarios can be
defined, as follows:

1. Given a reference architecture RA, once a core component in RA is changed,
a strategy RT(RA,RA′) is needed for retesting the reference architecture;

2. Given a reference architecture RA and a product P derived from it, a strategy
RT(RA,P) can be used to test P under the assumption that RA has already
been tested, taking advantage of the similarities between the RA and P;

3. Given two products P1 and P2, both derived from the same reference ar-
chitecture RA, a strategy RT(P1,P2) can be applied to test P2 under the
assumption that P1 has already been tested, taking advantage of the simi-
larities among products derived from the same RA.

By taking the two versions (the original and its modified one) as the main input
of the RT regression testing approach, a 4-step approach (from regression test-
ing planning to test reporting) is proposed. Architectural specifications, feature
models, the product map, and the feature dependency diagram can be used to
identify portions that need retesting.

The preliminary work of Engström in [28] presents observations coming from
two systematic reviews of the relevant literature; one deals with regression test
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selection and the other one with software product line testing. As future work,
Engström plans to investigate (among others) how to perform regression testing
in software product lines.

6 Conclusions and Future Work

The most important concepts characterizing software product line engineering
as a discipline for the development of a diversity of software products or systems
based on the underlying architecture of the product platform, are a product line’s
commonalities and variability (often defined in terms of features whose relations
are expressed in a feature model). Commonalities define what different software
products or systems have in common and guides the production of domain-
specific core components. Variability defines the ability to change or customize
a software product or system (i.e., to distinguish one product from another in
the software product line).

In this paper, we define a testing approach to exploit the commonalities and
variability of the products of a software product line when the software product
line (architecture) is subject to evolution. The idea is to retest only selected
products while inferring the “correct” functioning of other products conforming
to the software product line. Our approach, heavily based on that of [4], makes
use of assume-guarantee reasoning, which is used both to verify the (underlying
architectural) design of the product or system and to drive the testing phase.

While we are obviously aware that this work is quite preliminary, we believe
it can trigger interesting discussions, and for this purpose we are submitting it
to this workshop. As a consequence, there is a long list of future work we would
like to accomplish in the near future.

First, we plan to apply the presented approach to the Arcade Game Maker
Pedagogical Product Line whose specification and code are available online3.

Second, we want to experiment with the presented approach also on other
industrial case studies, like the one presented in Section 2.

Some further real-world industrial case studies can be found through the Ar-
chitecture Support for Testing initiative4 which this research is part of.

Finally, we ideally would like to automate our approach. As said before,
labeled transition systems are currently used for describing the components’
behavior as well as the assume and guarantee properties of a given software
product or system, while in the approach of [4] the aforementioned Labelled
Transition System Analyser is used for automatically generating assumptions.
Our approach, however, would require an extension in order to be able to deal
with product line architectures, for which we intend to move from labeled transi-
tion systems to so-called modal transition systems, which were recognized in [11]
as a useful formal model for describing in a compact way the possible operational
behavior of all products of a product line. As a result, we foresee the need for
an appropriate extension of the Modal Transition System Analyser [29] (a tool

3 http://www.sei.cmu.edu/productlines/ppl/
4 http://www.henrymuccini.com/index.php?pageId=AST

http://www.sei.cmu.edu/productlines/ppl/
http://www.henrymuccini.com/index.php?pageId=AST
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built on top of the Labelled Transition System Analyser in order to deal with
limited variability) for automatically generating assumptions for product line
architectures, and for coping with test traces generation.
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