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Abstract. We consider a general shuffling operation for finite and infinite words which is not necessarily
fair. This means that it may be the case that in a shuffle of two words, from some point onwards, one of
these words prevails ad infinitum even though the other word still has letters to contribute. Prefixes and
limits of shuffles are investigated, leading to a characterization of general shuffles in terms of shuffles of finite
words, a result which does not hold for fair shuffles. Associativity of shuffling is an immediate corollary.

1 Introduction

Shuffling two words is usually defined as arbitrarily interleaving subwords in such a way that the resulting word
contains all letters of both words, like shuffling two decks of cards. Shuffling is a well-known operation—sometimes
referred to as interleaving, weaving, or merging—that, in many variants, has been extensively studied. Its popu-
larity comes from purely mathematical interest [5, 7, 8, 10–13, 15–17] and from its significance as a semantics for
concurrent systems consisting of several components [2, 4, 6, 14, 18–20, 22, 23].

When systems may be iteratively composed, the modularity of the chosen semantics becomes important.
In particular, when a form of shuffling is used to combine behaviours, this operation should be commutative
and associative. In addition, systems—in particular reactive systems—may exhibit ongoing, infinite behaviours,
represented by infinite words. While it is in general not difficult to prove the commutativity and associativity of
shuffling operations in case only finite words are involved [2, 4, 7, 10, 13, 17, 20, 22, 23], this changes when infinite
words are allowed or certain variants of shuffling are considered. Mostly it is still easy to prove commutativity,
but it may be quite challenging to prove associativity [2, 4, 19]. There even exist variants of shuffling for which
associativity does not hold [5, 8, 15–17] contrary to the intuition.

In this paper we consider shuffles of possibly infinite words which are not necessarily fair in the sense that
one of the two words may be delayed indefinitely, while for each position in the shuffle an occurrence of a
letter from the other word is chosen. Note that with this definition, a shuffle of two finite words is always a
standard—fair—shuffle. The motivation for this particular shuffle operation stems from our attempts to describe
the behaviour of a certain type of team automaton as a language composed of the languages of its constituting
component automata [2–4]. These languages are prefix-closed and may contain infinite words. The composed
behaviour as exhibited by the team is not necessarily fair in the sense that any individual component is allowed
to execute its behaviour ad infinitum, without giving other components a fair turn to continue. This leads to
a language consisting of potentially unfair shuffles of words representing behaviours of the various components.
Since team automata consist in general of two or more components and may also be defined in an iterative
fashion, an associativity result for this generalized form of shuffling is needed to establish the compositionality
of the semantics. As demonstrated in the Ph.D. thesis [2] of the first author, this associativity result can also
be used for proving the associativity of other more involved—synchronized—shuffle operations, relevant when
describing the behaviour of team automata cooperating under different synchronization strategies.

Unfortunately we were unable to find in the literature explicit results concerning the associativity of the
shuffle operation as considered here, although there exist many references to the associativity of related shuffle
operations [7, 10, 13, 17, 20, 22, 23]. We could thus try and adapt existing results to the general case when the
words that are shuffled may be finite or infinite and the shuffle does not have to be fair. However, rather than
focussing on the single property of associativity, we propose to investigate here the more general issue of the
relationship between shuffles of (finite or infinite) words and the shuffles of their finite prefixes. This should
shed more light on the relationships between the finite and the infinite behaviours of the composed system, and
contribute to the general knowledge of shuffling in the context of infinite words. The associativity of shuffling
follows as a corollary. Hence it is our aim to give a self-contained exposition, elaborating the limit behaviour of
shuffles with infinite words and leading to a characterization of shuffles in terms of their prefixes.



The organization of the paper is as follows. In Section 2 we introduce the necessary notations and definitions
and establish some basic properties. Also proved here is the important result that the prefixes of the shuffles of
two words are exactly the shuffles of the prefixes of these words. Next, in Section 3, we separately consider fair
shuffles. Using an established technique, it is proved directly that fair shuffling is associative, also when the words
involved may be infinite. Consequently, in the main Section 4, we consider general shuffles. As a main result we
demonstrate that a word must be a shuffle of two given words whenever all its prefixes are shuffles of the prefixes
of these two words. This result does not hold if only fair shuffles are allowed. Together with the earlier result
from Section 2 this leads to a characterization of shuffles, and its associativity follows.

2 Basic Definitions and Observations

Let Σ be an alphabet, i.e. a (possibly empty, possibly infinite) set of symbols or letters. A word over Σ is a
sequence a1a2 · · · with each ai ∈ Σ. A word may be finite or infinite. The empty word is denoted by λ. For a
finite word w, we use the notation |w| to denote its length. Hence |λ| = 0 and if w = a1a2 · · · an, with n ≥ 1 and
ai ∈ Σ, for all 1 ≤ i ≤ n, then |w| = n. For a word w and an integer j ≥ 1 such that j ≤ |w| if w is finite, we use
w(j) to denote the symbol occurring at the jth position in w.

The set of all finite words over Σ (including λ) is denoted by Σ∗. The set Σ+ = Σ∗ \ {λ} consists of all
nonempty finite words. By convention Σ ⊆ Σ+. The set of all infinite words over Σ is denoted by Σω. By Σ∞

we denote the set of all words over Σ. Hence Σ∞ = Σ∗ ∪Σω. A language (over Σ) is a set of words (over Σ). A
language consisting solely of finite words is called finitary. If L ⊆ Σω, i.e. all words of L are infinite, then L is
called an infinitary language. When dealing with singleton languages, we often omit brackets and write w rather
than {w}.

Given two words u, v ∈ Σ∞, their concatenation u ·v is defined as follows. If u, v ∈ Σ∗, then u ·v(i) = u(i) for
1 ≤ i ≤ |u| and u · v(|u|+ i) = v(i) for 1 ≤ i ≤ |v|. If u ∈ Σ∗ and v ∈ Σω, then u · v(i) = u(i) for 1 ≤ i ≤ |u| and
u · v(|u|+ i) = v(i) for i ≥ 1. If u ∈ Σω and v ∈ Σ∞, then u · v(i) = u(i) for all i ≥ 1. Note that u · λ = λ · u = u,
for all u ∈ Σ∞. The concatenation of two languages K and L is the language K ·L = {u · v | u ∈ K, v ∈ L}. We
will mostly write uv and KL rather than u · v and K · L, respectively.

A word u ∈ Σ∗ is a (finite) prefix of a word w ∈ Σ∞ if there exists a v ∈ Σ∞ such that w = uv. In that case
we write u ≤ w. If u ≤ w and u 6= w, then we may use the notation u < w. Moreover, if |u| = n, for some n ≥ 0,
then u is the prefix of length n of w, denoted by w[n]. Note that w[0] = λ. The set of all prefixes of a word w is
pref (w) = {u ∈ Σ∗ | u ≤ w}. For a language K, pref (K) =

⋃

{pref (w) | w ∈ K}.
Both finite and infinite words can be defined as the limit of their prefixes. Let v1, v2, . . . ∈ Σ

∗ be an infinite
sequence of words such that vi ≤ vi+1, for all i ≥ 1. Then lim

n→∞
vn is the unique word w ∈ Σ∞ defined by

w(i) = vj(i), for all i, j ∈ IN such that i ≤ |vj |. Hence vi ≤ w for all i ≥ 1 and w = vk whenever there exists
a k ≥ 1 such that vn = vn+1 for all n ≥ k. For an infinite sequence of finite words u1, u2, . . . ∈ Σ∗ we use the
notation u1u2 · · · to denote the word lim

n→∞
u1u2 · · ·un.

We now move to shuffles. We define a shuffle of two words as an interleaving of consecutive finite subwords of
these words which stops (is finite) only if both words have been used completely. This implies that one (infinite)
word may prevail when the other word, from some point onwards, contributes nothing anymore but the trivial
subword λ.

Definition 1. Let u, v ∈ ∆∞. Then
(1) w ∈ ∆∞ is a fair shuffle of u and v if w = u1v1u2v2 · · ·, where ui, vi ∈ ∆∗, for all i ≥ 1, are such that

u = u1u2 · · · and v = v1v2 · · ·, and
(2) w ∈ ∆∞ is a shuffle of u and v if either

(a) w is a fair shuffle of u and v, or
(b) w = u1v1u2v2 · · ·, where ui, vi ∈ ∆

∗, for all i ≥ 1, and either u1u2 · · · ∈ pref (u) and v = v1v2 · · · ∈ ∆
ω,

or u = u1u2 · · · ∈ ∆
ω and v1v2 · · · ∈ pref (v). ut

For u, v ∈ ∆∞, the set of all fair shuffles of u and v is denoted by u ||| v and the set of all shuffles of u and
v is denoted by u || v. Thus, u ||| v = {w ∈ ∆∞ | w is a fair shuffle of u and v} and u || v = {w ∈ ∆∞ |
w is a shuffle of u and v}. Note that, as defined by the fair shuffle operator ||| and the shuffle operator ||, both
fair shuffling and shuffling yield languages.

Shuffling two languages is defined element-wise: The fair shuffle of two languages L1 and L2 is denoted by
L1 ||| L2 and is defined as the set of all words which are a fair shuffle of a word from L1 and a word from L2.
Hence L1 ||| L2 = {w ∈ u ||| v | u ∈ L1, v ∈ L2}. Similarly, the shuffle of L1 and L2 is denoted by L1 || L2 and
is defined as L1 || L2 = {w ∈ u || v | u ∈ L1, v ∈ L2}.
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Note that by definition a shuffle of two finite words is always fair: u || v = u ||| v whenever u and v are finite
words. On the other hand, if at least one among u and v is infinite, then u ||| v ⊆ u || v and this inclusion may
be strict, as can be concluded from the following example.

Example 2. The word ab is a shuffle of a and b and a || b = {ab, ba}, a2 || b = {a2b, aba, ba2}; in general an || b =
{aibaj | i, j ≥ 0, i + j = n}. Note that every shuffle in an || b is fair. Also aω ||| b = {aibaω | i ≥ 0} consists of
fair shuffles only, but aω || b = (aω ||| b)∪aω. Note that also for infinite words it may be the case that all shuffles
are fair shuffles: aω ||| a = aω || a = aω. ut

It follows immediately from Definition 1 that both fair shuffling and shuffling are commutative operations.

Theorem 3. Let u, v ∈ ∆∞. Then u ||| v = v ||| u and u || v = v || u. ut

Also the next observation is easily proved. It describes the structure of (fair) shuffles and it can be used as a
recursive definition for the shuffles of finite words (see, e.g., [5, 17, 21]).

Lemma 4. Let u, v ∈ ∆∞ and a, b ∈ ∆. Then
(1) u || λ = u ||| λ = u = λ ||| u = λ || u and
(2) au ||| bv = a(u ||| bv) ∪ b(au ||| v) and au || bv = a(u || bv) ∪ b(au || v). ut

As an intermediate result we obtain that any concatenation of (fair) shuffles is a (fair) shuffle of a concatenation.
In particular, any shuffle of prefixes of two words is a prefix of the (fair) shuffle of these words.

Lemma 5. Let u, v ∈ ∆∞ and z, u′, v′ ∈ ∆∗. Then
(1) z(u ||| v) ⊆ zu ||| v and z(u || v) ⊆ zu || v, and
(2) (u′ || v′)(u ||| v) ⊆ u′u ||| v′v and (u′ || v′)(u || v) ⊆ u′u || v′v.

Proof. (1) We only prove the first inclusion. The other proof is analogous. Let w ∈ z(u ||| v). Then w = zw′

for some w′ ∈ u ||| v. By Definition 1(1), w′ = u1v1u2v2 · · ·, with ui, vi ∈ ∆∗ for all i ≥ 1, u = u1u2 · · ·, and
v = v1v2 · · ·. Thus w = zw′ = zu1v1u2v2 · · · with zu1u2 · · · = zu. Hence w ∈ zu ||| v.

(2) We only prove the first inclusion. The other proof is analogous. First assume u′ = λ. Then u′ || v′ = v′

by Lemma 4(1). From Theorem 3 and (1) we have v′(u ||| v) ⊆ u ||| v′v. The case that v′ = λ is symmetric.
We proceed by induction on |u′| + |v′|. The cases that |u| = 0 or |v| = 0 have already been dealt with. We
thus assume that u′ = au1 and v′ = bv1 with a, b ∈ ∆ and u1, v1 ∈ ∆∗. Then, by Lemma 4(2), u′ || v′ =
au1 || bv1 = a(u1 || bv1)∪ b(au1 || v1). This yields (u

′ || v′)(u ||| v) = a(u1 || bv1)(u ||| v)∪ b(au1 || v1)(u ||| v) ⊆
a(u1u ||| bv1v) ∪ b(au1u ||| v1v) ⊆ (au1u ||| bv1v) ∪ (au1u ||| bv1v) = (u′u ||| v′v) by applying the induction hy-
pothesis and Lemma 4(2) twice. ut

In addition, as we prove next, every prefix of a shuffle of two words is a fair shuffle of prefixes of these words.
Consequently, the shuffles and the fair shuffles of two words determine the same set of prefixes.

Theorem 6. Let u, v ∈ ∆∞. Then pref (u) || pref (v) = pref (u ||| v) = pref (u || v) = pref (u) ||| pref (v).

Proof. From Lemma 5(2) we know that pref (u) || pref (v) ⊆ pref (u ||| v). Since u ||| v ⊆ u || v by Definition 1, it
follows that pref (u ||| v) ⊆ pref (u || v) and pref (u) ||| pref (v) ⊆ pref (u) || pref (v). Hence the proof is complete
once we have shown that pref (u || v) ⊆ pref (u) ||| pref (v). Let z ∈ pref (u || v). This implies that there exist
an n ≥ 1 and u1, u2, . . . , un, v1, v2, . . . , vn ∈ ∆∗ such that z = u1v1u2v2 · · ·un−1vn−1x with x ∈ pref (unvn),
u1u2 · · ·un ∈ pref (u), and v1v2 · · · vn ∈ pref (v). It is now immediately clear that z ∈ pref (u) ||| pref (v). ut

Example 7. Although aω ||| b 6= aω || b, we have pref (aω ||| b) = pref (aω || b) = {aibaω | i ≥ 0} ∪ a∗. ut

3 Associativity of Fair Shuffling

In this section the associativity of fair shuffling is proved: u ||| (v ||| w) = (u ||| v) ||| w for all words u, v, and w.
Extending a technique known from, e.g., [13, 17, 21], to infinite words makes it possibly to prove rather directly
that fair shuffling is associative. This technique is based on renaming and inserting: with each word we associate
its own (indexed) alphabet and rename its letters accordingly. Next arbitrary (finite) subwords over the other
indexed alphabet are inserted to simulate shuffles with arbitrary words over the other indexed alphabet. Then
we intersect the resulting sets: all words in the intersection are (fair) shuffles of the renamed words. Hence to
obtain all (fair) shuffles, it is sufficient to ultimately simply go back to the original alphabets.
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To formalize all this, we use homomorphisms and their extension to infinite words. Let h : Σ → Γ ∗ be a
function assigning to each letter of alphabet Σ a finite word over Γ . The homomorphic extension of h to Σ∗, also
denoted by h, is defined in the usual way by h(λ) = λ and h(xy) = h(x)h(y) for all x, y ∈ Σ∗. We extend h to
Σ∞ by setting h( lim

n→∞
vn) = lim

n→∞
h(vn), for all v1, v2, . . . ∈ Σ

∗ such that for all i ≥ 1, vi ≤ vi+1. Note that this is

well-defined, since vi ≤ vi+1 implies h(vi) ≤ h(vi+1).
Let ∆ be an alphabet. For each integer i ∈ IN and each a ∈ ∆ we let [a, i] be a distinct symbol. Let

[∆, i] = {[a, i] | a ∈ ∆}. Thus for all i, j ∈ IN such that i 6= j, [∆, i] and [∆, j] are disjoint. We moreover assume
that ∆ and [∆, i] are disjoint for all i. The homomorphisms βi : ∆

∗ → [∆, i]
∗
and βi : [∆, i]

∗
→ ∆∗ are defined

by βi(a) = [a, i] and βi([a, i]) = a, respectively. Note that βi and βi are renamings (bijections): βi uniquely labels
every letter in a word with i and βi can be used to remove this label again. Now let i ∈ IN and J ⊆ IN be such
that i /∈ J . We define ϕi,J : (

⋃

{[∆, j] | j ∈ {i} ∪ J})∗ → ∆∗ by ϕi,J ([a, i]) = a and ϕi,J ([a, j]) = λ, for all j ∈ J .
Furthermore, we have ψJ : (

⋃

{[∆, j] | j ∈ J})∗ → ∆∗ defined by ψJ([a, j]) = a, for all j ∈ J . Note that ϕi,∅ = βi
and ψ{j} = βj . Intuitively, ϕi,J is used to remove the label i from every letter in a word that is labelled by i
and to erase every other symbol from that word, whereas ψJ simply removes all labels in J from every letter in
a word that is labelled by such a label from J .

We begin with the result announced above, which provides an alternative definition for the fair shuffle.

Theorem 8. Let u, v ∈ ∆∞. Then, for all i, j ∈ IN such that i 6= j, u ||| v = ψ{i,j}(ϕ
−1
i,{j}(u) ∩ ϕ

−1
j,{i}(v)).

Proof. Without loss of generality we assume that i = 1 and j = 2.
(⊆) Let w ∈ u ||| v. Then w = u1v1u2v2 · · · with u1, u2, . . . , v1, v2, . . . ∈ ∆∗ such that u = u1u2 · · · and

v = v1v2 · · ·. Now consider w = β1(u1)β2(v1)β1(u2)β2(v2) · · ·. It follows immediately that ϕ1,{2}(w) = u. Likewise,

ϕ2,{1}(w) = v. Hence w ∈ ϕ−1
1,{2}(u) ∩ ϕ

−1
2,{1}(v). Since ψ{1,2}(w) = w, we are done.

(⊇) We only prove the case that u, v ∈ ∆ω. The proofs of the other cases are similar. Let w ∈ ψ{1,2}(ϕ
−1
1,{2}(u)∩

ϕ−1
2,{1}(v)) and w ∈ ϕ

−1
1,{2}(u)∩ϕ

−1
2,{1}(v) be such that ψ{1,2}(w) = w. As ϕ1,{2}(w) = u there exist x1, x2, . . . ∈ ∆

∗

and u1, u2, . . . ∈ ∆+ such that w = β2(x1)β1(u1)β2(x2)β1(u2) · · · and u = u1u2 · · ·. Similarly, ϕ2,{1}(w) = v
implies that there exist y1, y2, . . . ∈ ∆∗ and v1, v2, . . . ∈ ∆+ such that w = β1(y1)β2(v1)β1(y2)β2(v2) · · · and
v = v1v2 · · ·. Hence β2(x1)β1(u1)β2(x2)β1(u2) · · · = β1(y1)β2(v1)β1(y2)β2(v2) · · ·. Since [∆, 1]∩ [∆, 2] = ∅ it must
be the case that either β2(x1) = λ or β1(y1) = λ.

First assume that β2(x1) = λ, i.e. x1 = λ. Hence β1(u1)β2(x2)β1(u2)β2(x3) · · · = β1(y1)β2(v1)β1(y2)β2(v2) · · ·.
Again by [∆, 1] ∩ [∆, 2] = ∅ and from the fact that ui, vi ∈ ∆

+ for all i ≥ 1, we know that β1(ui) = β1(yi) and
β2(vi) = β2(xi+1) for all i ≥ 1. Thus w = ψ{1,2}(w) = u1v1u2v2 · · · ∈ u ||| v.

The case that β1(y1) = λ is treated analogously. ut

This alternative definition makes it possible to derive a symmetric description for the case that a word u is fairly
shuffled with the fair shuffles v ||| w of words v and w.

Lemma 9. Let u, v, w ∈ ∆∞. Let i1, i2, i3 ∈ IN be three different integers and let j ∈ IN be such that j 6= i1.
Then
ψ{i1,j}(ϕ

−1
i1,{j}

(u)∩ϕ−1
j,{i1}

(ψ{i2,i3}(ϕ
−1
i2,{i3}

(v)∩ϕ−1
i3,{i2}

(w))))=ψ{i1,i2,i3}(ϕ
−1
i1,{i2,i3}

(u)∩ϕ−1
i2,{i1,i3}

(v)∩ϕ−1
i3,{i1,i2}

(w)).

Proof. Without loss of generality we assume that ik = k, for 1 ≤ k ≤ 3, and j 6= 1.
(⊆) Let z ∈ ψ{1,j}(ϕ

−1
1,{j}(u)∩ϕ

−1
j,{1}(ψ{2,3}(ϕ

−1
2,{3}(v)∩ϕ

−1
3,{2}(w)))) and z ∈ ϕ

−1
1,{j}(u)∩ϕ

−1
j,{1}(ψ{2,3}(ϕ

−1
2,{3}(v)∩

ϕ−1
3,{2}(w))) be such that ψ{1,j}(z) = z. Let x ∈ ψ{2,3}(ϕ

−1
2,{3}(v)∩ϕ

−1
3,{2}(w)) be such that z ∈ ϕ−1

1,{j}(u)∩ϕ
−1
j,{1}(x).

Let x ∈ ϕ−1
2,{3}(v) ∩ ϕ

−1
3,{2}(w) be such that ψ{2,3}(x) = x. Hence x is of the form x = b1c1b2c2 · · · such that for

all i ≥ 1, bi ∈ [∆, 2] ∪ {λ} and ci ∈ [∆, 3] ∪ {λ}, β2(b1b2 · · ·) = v, and β3(c1c2 · · ·) = w. Furthermore z is of
the form z = a1b1c1a2b2c2 · · · such that for all i ≥ 1, ai ∈ [∆, 1] ∪ {λ} and bi, ci ∈ [∆, j] ∪ {λ}, β1(a1a2 · · ·) =
u, and βj(b1c1b2c2 · · ·) = ψ{2,3}(b1c1b2c2 · · ·) is such that βj(b1b2 · · ·) = β2(b1b2 · · ·) = v and βj(c1c2 · · ·) =

β3(c1c2 · · ·) = w. Now consider that z = a1β2(βj(b1))β3(βj(c1))a2β2(βj(b2))β3(βj(c2)) · · ·. Since β1(a1a2 · · ·) = u,

β2(β2(βj(b1))β2(βj(b2)) · · ·) = βj(b1b2 · · ·) = v, and β3(β3(βj(c1))β3(βj(c2)) · · ·) = βj(c1c2 · · ·) = w, we know

that ϕ1,{2,3}(z) = u, ϕ2,{1,3}(z) = v, and ϕ3,{1,2}(z) = w. Hence z ∈ ϕ−1
1,{2,3}(u) ∩ ϕ

−1
2,{1,3}(v) ∩ ϕ

−1
3,{1,2}(w) and

ψ{1,2,3}(z) = ψ{1,j}(z) = z.

(⊇) Let z ∈ ψ{1,2,3}(ϕ
−1
1,{2,3}(u) ∩ ϕ

−1
2,{1,3}(v) ∩ ϕ

−1
3,{1,2}(w)) and z ∈ ϕ−1

1,{2,3}(u) ∩ ϕ
−1
2,{1,3}(v) ∩ ϕ

−1
3,{1,2}(w) be

such that ψ{1,2,3}(z) = z. Hence z is of the form z = a1b1c1a2b2c2 · · · such that for all i ≥ 1, ai ∈ [∆, 1]∪{λ}, bi ∈

[∆, 2]∪ {λ}, and ci ∈ [∆, 3]∪ {λ}, β1(a1a2 · · ·) = u, β2(b1b2 · · ·) = v, and β3(c1c2 · · ·) = w. Let u = a1α1a2α2 · · ·,
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with αi ∈ ([∆, j] ∪ {λ})∗, be such that for all i ≥ 1, βj(αi) = ψ{2,3}(bici). Then clearly u ∈ ϕ−1
1,{j}(u). Next

let x = b1c1b2c2 · · ·. Then x ∈ ϕ−1
2,{3}(v) ∩ ϕ

−1
3,{2}(w). Since for all i ≥ 1, ϕj,{1}(αi) = βj(αi) = ψ{2,3}(bici) and

ai ∈ [∆, 1] ∪ {λ}, it follows that u ∈ ϕ−1
j,{1}(ψ{2,3}(x)). Thus u ∈ ϕ−1

1,{j}(u) ∩ ϕ
−1
j,{1}(ψ{2,3}(x)). Finally, the fact

that for all i ≥ 1, βj(αi) = ψ{2,3}(bici) now implies that ψ{1,j}(u) = ψ{1,2,3}(z) = z. ut

With this lemma it is now straightforward to prove that fair shuffling of possibly infinite words is associative, a
result which is mentioned in [19] (where fair shuffling is called fair merge) but which is not proved there due to
the complications caused by a different setting.

Theorem 10. Let u, v, w ∈ ∆∞. Then u ||| (v ||| w) = (u ||| v) ||| w.

Proof. By Theorem 8 and Lemma 9, u ||| (v ||| w) = ψ{1,4}(ϕ
−1
1,{4}(u) ∩ ϕ

−1
4,{1}(ψ{2,3}(ϕ

−1
2,{3}(v) ∩ ϕ

−1
3,{2}(w)))) =

ψ{1,2,3}(ϕ
−1
1,{2,3}(u)∩ϕ

−1
2,{1,3}(v)∩ϕ

−1
3,{1,2}(w)). Similarly, we have (u ||| v) ||| w = ψ{3,4}(ϕ

−1
4,{3}(ψ{1,2}(ϕ

−1
1,{2}(u)∩

ϕ−1
2,{1}(v)))∩ϕ

−1
3,{4}(w)) = ψ{1,2,3}(ϕ

−1
1,{2,3}(u)∩ϕ

−1
2,{1,3}(v)∩ϕ

−1
3,{1,2}(w)). Hence we conclude that u ||| (v ||| w) =

(u ||| v) ||| w. ut

Since for finite words shuffles and fair shuffles are the same, this theorem implies that shuffling is associative
for finite words. This is a well-known fact (see, e.g., [7, 10, 13, 17, 20, 22]) which we state here explicitly for
completeness’ sake and for future reference.

Corollary 11. Let u, v, w ∈ ∆∗. Then u || (v || w) = (u || v) || w.

Theorem 8 supplies an alternative definition for fair shuffles only, since the inverse homomorphisms used to
insert subwords are applied to the complete words to be shuffled. To extend this theorem to the general case
we would have to consider also the prefixes of one word in case the other word is infinite. Because of this case
distinction, this would lead to a less uniform description for shuffles than we now have for fair shuffles. Rather
than proving associativity on basis of such an alternative definition or by further investigating the implications of
the associativity of fair shuffling, we will present in the next subsection a more general approach based on prefix
properties. We will express shuffles as limits of shuffles of finite words, which should then allow us to apply the
associativity of the shuffling of finite words (Corollary 11).

4 General Shuffles

In this section we will prove that a word is a shuffle of two given words if and only if each of its prefixes is a
shuffle of prefixes of these two words.

We begin by introducing the concept of decomposition as an explicit description of how a shuffle is obtained
from two given finite words.

Definition 12. Let w ∈ ∆∗. A decomposition of w is a sequence d = (u1, v1, u2, v2, . . . , un, vn) with n ≥ 1,
u1 ∈ ∆∗, u2, u3, . . . , un, v1, v2, . . . , vn−1 ∈ ∆+, vn ∈ ∆∗, and w = u1v1u2v2 · · ·unvn. If u1u2 · · ·un = u and
v1v2 · · · vn = v, then d is called a (u, v)-decomposition of w. The norm of d, denoted by || d ||, is n. ut

Note that decompositions—apart from the first and the last subword mentioned—only refer to nonempty sub-
words of the words that are shuffled. This provides us with a normal form for the description of finite shuffles.

Lemma 13. Let u, v, w ∈ ∆∗. Then there exists a (u, v)-decomposition of w if and only if w ∈ u || v.

Proof. (Only if) Immediate from Definitions 1 and 12.
(If) Let w ∈ u || v. Then by Definition 1 we have w = u1v1u2v2 · · ·, with ui, vi ∈ ∆

∗ for all i ≥ 1, u = u1u2 · · ·,
and v = v1v2 · · ·. Let ρ1 = (u1, v1) and if ρk = (α1, β1, α2, β2, . . . , α`, β`) for some ` ≥ 1 and αj , βj ∈ ∆

∗, for all
1 ≤ j ≤ `, then

ρk+1 =







(α1, β1, α2, β2, . . . , α`uk+1, vk+1) if β` = λ,
(α1, β1, α2, β2, . . . , α`, β`vk+1) if β` 6= λ and uk+1 = λ, and
(α1, β1, α2, β2, . . . , α`, β`, uk+1, vk+1) if β` 6= λ and uk+1 6= λ.

Thus ρk+1 is obtained from ρk by adding the words uk+1 and vk+1. These are added in such a way that only
the first and the last element of ρk+1 are allowed to equal λ. In general, if ρk = (α1, β1, α2, β2, . . . , α`, β`), then
α1, β` ∈ ∆∗, αj ∈ ∆+, for all 1 < j ≤ `, and βj ∈ ∆+, for all 1 ≤ j < `. Furthermore, α1β1α2β2 · · ·α`β` =
u1v1u2v2 · · ·ukvk, α1α2 · · ·α` = u1u2 · · ·uk, and β1β2 · · ·β` = v1v2 · · · vk. Since w is finite, there must ex-
ist an m ≥ 1 such that for all n > m, un = vn = λ. Then ρm = (α1, β1, α2, β2, . . . , α`, β`) is such that
α1β1α2β2 · · ·α`β` = w, α1 ∈ ∆

∗, β1, α2, β2, α3, . . . , β`−1, α` ∈ ∆
+, β` ∈ ∆

∗, α1α2 · · ·α` = u, and β1β2 · · ·β` = v.
Hence ρm is a (u, v)-decomposition of w. ut
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It is not difficult to see that a shuffle may have several decompositions. In a series of papers (see, e.g., [16, 17])
Mateescu et al. use so-called ‘trajectories’ to describe shuffles. A trajectory defines, in a binary fashion, when to
switch from one word to another. When applied, a trajectory thus defines a unique decomposition. Associativity
is consequently discussed per set of trajectories. However, associativity of the shuffle as investigated here is not
considered.

In order to be able to describe extensions of shuffles explicitly, we introduce a precedence relation for decom-
positions.

Definition 14. Let d = (x1, y1, x2, y2, . . . , xk, yk) and d′ = (u1, v1, u2, v2, . . . , un, vn) be two decompositions of
x1y1x2y2 · · ·xkyk ∈ ∆

∗ and u1v1u2v2 · · ·unvn ∈ ∆
∗, respectively. Then

(1) d directly precedes d′ if k ≤ n and for all 1 ≤ j ≤ k − 1, xj = uj and yj = vj, and—moreover—either
(a) k = n, xk = uk, and yka = vk, for some a ∈ ∆, or
(b) k = n, yk = vk = λ, and xka = uk, for some a ∈ ∆, or
(c) k = n− 1, yk 6= λ, vk+1 = λ, and uk+1 = a, for some a ∈ ∆, and

(2) d precedes d′ if there exist decompositions d0, d1, . . . , d` such that ` ≥ 0, d = d0, d
′ = d`, and for all

0 ≤ j ≤ `− 1, dj directly precedes dj+1. ut

Note that if d and d′ are two decompositions such that d directly precedes d′, then || d′|| = || d || or || d′|| = || d ||+1.
Hence if d precedes d′, then || d′|| ≥ || d ||.

It is easy to see that whenever a decomposition d precedes a decomposition d′, then d decomposes a prefix of
the word that d′ decomposes. In fact, we have the following result.

Lemma 15. Let d = (x1, y1, x2, y2, . . . , xk, yk) and d′ = (u1, v1, u2, v2, . . . , un, vn) be two decompositions such
that d precedes d′. Then x1x2 · · ·xk ∈ pref (u1u2 · · ·un), y1y2 · · · yk ∈ pref (v1v2 · · · vn), and x1y1x2y2 · · ·xkyk ∈
pref (u1v1u2v2 · · ·unvn).

Proof. If d = d′ there is nothing to prove, so let us assume that d 6= d′. From Definition 14 it is clear that the
statement holds in case d immediately precedes d′.

If d precedes d′, then there exist (sj , tj)-decompositions dj of words wj ∈ ∆
∗ with 0 ≤ j ≤ `, for some ` ≥ 1,

such that d0 = d, d` = d′, and dj immediately precedes dj+1, for all 0 ≤ j < `. Hence, for all 0 ≤ j < ` − 1,
sj ∈ pref (sj+1), tj ∈ pref (tj+1), and wj ∈ pref (wj+1). Thus s0 = x1x2 · · ·xk ∈ pref (s`) = pref (u1u2 · · ·un),
t0=y1y2 · · · yk∈pref (t`)=pref (v1v2 · · · vn), and w0=x1y1x2y2 · · ·xkyk∈pref (w`)=pref (u1v1u2v2 · · ·unvn). ut

Given this lemma it can be proved that the limit of the shuffles defined by an ordered sequence of (ui, vi)-
decompositions is a shuffle of the limits of the ui and the vi.

Lemma 16. For all i ≥ 0, let di be a (ui, vi)-decomposition of a word wi over ∆ such that di precedes di+1.
Then u = lim

i→∞
ui, v = lim

i→∞
vi, and w = lim

i→∞
wi exist, and w ∈ u || v.

Proof. By Lemma 15 it follows that ui ≤ ui+1, vi ≤ vi+1, and wi ≤ wi+1, for all i ≥ 0, so indeed u, v, and w
exist and we only have to prove that w ∈ u || v. We distinguish two cases.

First we consider the case that there exists an N ∈ IN such that || di|| = || dN || for all i ≥ N . Let N0 ∈ IN be
such an N . Again we distinguish two cases.

Let us assume first that, for all i ≥ N0, if di = (x1, y1, x2, y2, . . . , xn, yn), then yn = λ. Consequently, for
all i ≥ N0, vi = vN0

. From ui ≤ ui+1, for all i ≥ 0, we infer that for all i > N0 there exist zi−N0
∈ ∆∗

such that ui+1 = uizi−N0
. Observe that u = lim

i→∞
ui = uN0

lim
i→∞

z1z2 · · · zi−N0
. We thus obtain that for all i >

N0 we have wi = wN0
z1z2 · · · zi−N0

. Since wN0
∈ uN0

|| vN0
by Lemma 13, we conclude that w = lim

i→∞
wi ∈

(uN0
|| vN0

) lim
i→∞

z1z2 · · · zi−N0
= (uN0

|| vN0
)( lim
i→∞

z1z2 · · · zi−N0
|| λ) ⊆ u || vN0

⊆ u || v by Lemma 5(2) and the

definition of u.
Next assume there exist an i ≥ N0 such that di = (x1, y1, x2, y2, . . . , xn, yn) with yn 6= λ. Let `0 be the

smallest such i. Thus, for all i ≥ `0, ui = u`0 . From vi ≤ vi+1, for all i ≥ 0, we infer that for all i > `0
there exist zi−`0 ∈ ∆∗ such that vi+1 = vizi−`0 . Observe that v = lim

i→∞
vi = v`0 lim

i→∞
z1z2 · · · zi−`0 . Thus for all

i > `0 we have wi = w`0z1z2 · · · zi−`0 . Since w`0 ∈ u`0 || v`0 by Lemma 13, we conclude that w = lim
i→∞

wi ∈

(u`0 || v`0) lim
i→∞

z1z2 · · · zi−`0 = (u`0 || v`0)(λ || lim
i→∞

z1z2 · · · zi−`0) ⊆ u`0 || v ⊆ u || v by Lemma 5(2) and the

definition of u.
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Now we move to the case that for allN ∈ IN there exists a k ∈ IN such that || dk|| ≥ N . Let j1, j2, . . . ∈ IN be the
(unique) infinite sequence of integers such that for all i ∈ IN, || dji

|| < || dji+1
|| and || d`|| = || dji

|| for all ji ≤ ` <
ji+1. Since || d0|| ≤ || d1|| ≤ · · · is an unbounded sequence of integers we know that the ji as just described exist.
Since each dji

precedes dji+1
, Definition 14 implies that there exist x1, x2, . . . , y1, y2, . . . , s1, s2, . . . , t1, t2, . . . ∈ ∆

∗

such that dji
=(x1, y1, x2, y2, . . . , x|| dji

||−1, y|| dji
||−1, si, ti), for all i≥1. By Lemma 15, uji

=x1x2 · · ·x|| dji
||−1si∈

pref (uji+1
) = pref (x1x2 · · ·x|| dji+1

||−1si+1), for all i ≥ 1, and thus u = lim
n→∞

x1x2 · · ·xn. Analogously, v =

lim
n→∞

y1y2 · · · yn, and w = lim
n→∞

x1y1x2y2 · · ·xnyn. Thus w = x1y1x2y2 · · · with x1 ∈ ∆∗, xi ∈ ∆+ for all i ≥ 2,

yi ∈ ∆
+ for all i ≥ 1, u = x1x2 · · ·, and v = y1y2 · · ·. Hence w ∈ u || v. ut

On the other hand, we would now like to show that whenever every prefix of a word w can be obtained as a
shuffle of a prefix of a word u and a prefix of a word v, then w is indeed a shuffle of u and v. To prove this it
would be convenient if the decompositions describing the prefixes of w as shuffles of prefixes of u and v would
precede each other and ultimately lead to w as a shuffle of u and v. As the next lemma demonstrates, this can
be achieved by requiring that u and v have no letters in common. We write alph(w) to denote the alphabet of a
word w, i.e. the set of all letters that actually occur in w.

Lemma 17. Let u, v ∈ ∆∞ be such that alph(u)∩alph(v) = ∅ and let w ∈ ∆ω. Then pref (w) ⊆ pref (u) || pref (v)
implies w ∈ u || v.

Proof. Let pref (w) ⊆ pref (u) || pref (v). Now consider two arbitrary consecutive prefixes of w. Thus for some
n ≥ 0 we have w[n] and w[n+1] = w[n]a with a ∈ alph(u) or a ∈ alph(v). Since pref (w) ⊆ pref (u) || pref (v), there
are prefixes un and un+1 of u, and prefixes vn and vn+1 of v such that w[n] ∈ un || vn and w[n+1] ∈ un+1 || vn+1.
Consequently, un+1 = una and vn+1 = vn if a ∈ alph(u), and vn+1 = vna and un+1 = un if a ∈ alph(v). Now
let dn be a (un, vn)-decomposition of w[n] with dn = (x1, y1, x2, y2, . . . , xk, yk) for some k ≥ 0. Then we obtain a
(un+1, vn+1)-decomposition of w[n+ 1] as follows.

First assume that a ∈ alph(u). If yk = λ, then dn+1 = (x1, y1, x2, y2, . . . , xka, yk), whereas if yk 6= λ, then
dn+1 = (x1, y1, x2, y2, . . . , xk, yk, a, λ). In both cases we have x1x2 · · ·xka = una = un+1 and y1y2 · · · yk = vn =
vn+1. Moreover x1y1x2y2 · · ·xkyka = w[n]a = w[n + 1]. Thus dn+1 is a (un+1, vn+1)-decomposition of w[n + 1]
and dn precedes dn+1.

Secondly, let a ∈ alph(v). Now dn+1 = (x1, y1, x2, y2, . . . , xk, yka). Since x1x2 · · ·xk = un = un+1 and
y1y2 · · · yka = vna = vn+1 are such that x1y1x2y2 · · ·xkyka = w[n]a = w[n + 1] we thus know that dn+1 is
a (un+1, vn+1)-decomposition of w[n+ 1], which is preceded by dn.

Observe that the only decomposition of w[0] = λ is d0 = (λ, λ). Hence we have defined an infinite (and
unique) sequence of (ui, vi)-decompositions di of w[i], with i ≥ 0, such that di precedes di+1 for all i ≥ 0. From
Lemma 16 it thus follows that w = lim

n→∞
w[n] ∈ ( lim

n→∞
un) || ( lim

n→∞
vn) = u || v. ut

Note that the proof just given uses the observation that—thanks to the disjointness of the alphabets—any
decomposition of a prefix of w into prefixes of u and v, has a (unique) successor describing a decomposition of
the next prefix. This ultimately leads to a description of w as a shuffle of u and v. Unfortunately, in general, it is
not true that decompositions of prefixes can be extended to decompositions of the next prefix. This is illustrated
in the following example, which even illustrates that an infinite word may have infinitely many prefixes with
non-extendable prefixes.

Example 18. Let u = (a3b)ω and v = bω. Clearly {a3, a3b} ⊆ pref (u), {b2, b3} ⊆ pref (v), and w = a3b3 ∈
pref (u) || pref (v). Note that d1 = (a3, b3) and d2 = (a3b, b2) are two decompositions of w.

Next consider w′ = wa = a3b3a ∈ pref (u) || pref (v). The only decompositions of w′ which are directly
preceded by a decomposition of prefixes of u and v are d′ = (a3b, b2, a, λ) and d′′ = (a3, b2, ba, λ). Clearly, d1

neither precedes d′ nor d′′. Note, however, that d2 precedes d′.

Finally, let j ≥ 0, uj = a3(ba3)
j
∈ pref (u), and vj = b3(b3)

j
∈ pref (v). Then clearly both wj = (a3b4)

j
a3b3 ∈

pref (u) || pref (v) and w′j=wja=(a3b4)
j
a3b3a∈pref (u) || pref (v). Note that dj=(x0, y0, x1, y1, . . . , xj , yj , a

3, b3),

where xi = a3b and yi = b3 for all 0 ≤ i ≤ j, is a (uj , vj)-decomposition of wj . By the same reasoning as for the
case j = 0 above it is however easy to see that there does not exist a decomposition of w′j based on prefixes of u
and v that is preceded by dj . ut

Despite this example, it can however be shown that for all words u, v ∈ ∆∞ and w ∈ ∆ω, whenever pref (w) ⊆
pref (u) || pref (v) then w ∈ u || v, even when u and v have letters in common. We do this by establishing the
existence of an infinite sequence of (un, vn)-decompositions of w[n], with n ≥ 0, preceding each other. With this
in mind we now recall König’s Lemma.
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Lemma 19 (König’s Lemma). If G is an infinite finitely-branching rooted tree, then there exists an infinite
path through G, starting in the root. ut

For later use we prove a more general result, by not just considering words, but limit-closed languages. Limit-
closedness guarantees that the infinitary part of a language is characterized by its finite prefixes. This notion has
been defined in many disguises throughout the literature on theoretical computer science. The oldest reference we
found is [1], where the terminology used is ‘a closed process’, while the term limit closure was coined in [9]—after
initially referring to the same concept as ‘König closure’ in its preceding technical report.

Definition 20. Let K ⊆ ∆∞. K is limit-closed if for all w1 ≤ w2 ≤ · · · ∈ pref (K), lim
n→∞

wn ∈ K ∪pref (K). ut

Example 21. All singleton languages {u} as well as all finitary languages L = {λ, a, . . . , an | n ≥ 1} over a
unary alphabet are limit-closed, whereas a∗ is not because lim

n→∞
an = aω /∈ a∗ ∪ L. However, a∗ ∪ aω and aω are

limit-closed. ut

Lemma 22. Let K,L ⊆ ∆∞ be limit-closed and let w ∈ ∆ω. Then pref (w) ⊆ pref (K) || pref (L) implies w ∈
K || L.

Proof. Let pref (w) ⊆ pref (K) || pref (L). For n ≥ 0, let Vn = {d | d is a (un, vn)-decomposition of w[n], un ∈
pref (K), and vn ∈ pref (L)} be the set of all possible decompositions of the prefix w[n] of w. Note that V0 =
{(λ, λ)}. Note furthermore that each Vn is finite, for n ≥ 0, and that Vn ∩ Vn′ = ∅, for all n > n′ ≥ 0.

Consider the directly precedes relation E = {(d, d′) | d directly precedes d′}. Thus E ⊆
⋃

n≥1(Vn−1 × Vn).
Note that G = (

⋃

n≥0 Vn, E) is a directed acyclic graph. It is sketched in Figure 1.

•
•
•

•
•
•

•
•
•

•
•
•

(u1, v1, u2, v2, . . . , ukz, λ) (u1, v1, u2, v2, . . . , uk, z) (u1, v1, u2, v2, . . . , uk, vk, z, λ) (u1, v1, u2, v2, . . . , uk, vkz)

(u1, v1, u2, v2, . . . , uk, vk) (u1, v1, u2, v2, . . . , uk, vk)=

λ

6=

λ

w[n]

w[n+1] = w[n]z

G:pref (w):

w[0] = λ

w[3] = w[2]c

w[1] = w[0]a

w[2] = w[1]b

(a, λ) (λ, a)

(λ, λ)

(ab, λ) (a, b) (λ, a, b, λ) (λ, ab)

(abc, λ) (ab, c) (a, b, c, λ) (a, bc) (λ, a, bc, λ) (λ, a, b, c) (λ, ab, c, λ) (λ, abc)

Fig. 1. Sketch of tree G = (
⋃

n≥0
Vn, E).

Except for (λ, λ), every vertex of G has precisely one incoming edge. This can be seen as follows. The fact
that pref (w) ⊆ pref (K) || pref (L) implies that every vertex has at least one incoming edge, whereas the fact
that for every decomposition of a prefix w[n], with n ≥ 1, we can immediately distinguish the unique last symbol
of w[n], implies that every vertex has at most one incoming edge. Furthermore, from Definition 14 it follows that
every vertex has at most two outgoing edges, depending on whether the symbol added to w[n], with n ≥ 0, to
obtain w[n+1] ‘belongs’ to a prefix from K or to a prefix from L. Hence G is an infinite finitely-branching rooted
tree with root (λ, λ).
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We can thus use König’s Lemma to conclude that there exists an infinite path π through G, starting in the
root (λ, λ). Let π = (d0, d1, . . .). Then for all n ≥ 0, dn is a (un, vn)-decomposition of w[n] and (dn, dn+1) ∈ E.
Hence from Lemma 16 it follows that u = lim

n→∞
un, v = lim

n→∞
vn, and w = lim

n→∞
wn exist, and w ∈ u || v. Since K

and L are limit-closed this implies that w ∈ K || L. ut

The statement of this lemma in general does not hold when either K or L is not limit-closed.

Example 23. Let K = a∗ and L = {λ}. Then pref (aω) = a∗ = pref (K) || pref (L), but aω /∈ a∗ = K || L. ut

Since singleton languages are limit-closed, we directly obtain as a corollary the desired result.

Corollary 24. Let u, v ∈ ∆∞ and w ∈ ∆ω. Then pref (w) ⊆ pref (u) || pref (v) implies w ∈ u || v. ut

It must be noted here that this result does not hold for fair shuffles.

Example 25. Consider aω. We have pref (aω) = a∗ and a∗ ⊆ pref (aω) ||| pref (b) = pref (aω) || pref (b). However,
as we have seen in Example 2, aω ∈ aω || b, but aω 6∈ aω ||| b. ut

Theorem 6 and Lemma 22 together characterize the shuffles of two words (limit-closed languages) as exactly the
limits of the shuffles of the prefixes of these words (languages).

Theorem 26. Let u, v ∈ ∆∞, let K,L ⊆ ∆∞ be limit-closed, and let w ∈ ∆ω. Then
(1) w ∈ u || v if and only if pref (w) ⊆ pref (u) || pref (v), and
(2) w ∈ K || L if and only if pref (w) ⊆ pref (K) || pref (L). ut

We need one more observation in order to conclude that shuffling is associative.

Corollary 27. Let v, w ∈ ∆∞. Then v || w is limit-closed.

Proof. Let y1 ≤ y2 ≤ · · · ∈ pref (v || w) and let y = lim
n→∞

yn. Since for all x ∈ pref (y), there exists an i ≥ 0

such that x ∈ pref (yi) ∈ pref (pref (v || w)) = pref (v || w), it follows that pref (y) ⊆ pref (v || w). We distinguish
two cases. If y ∈ ∆∗, then y ∈ pref (v || w). If y ∈ ∆ω, then by Theorem 26(1), y ∈ v || w. Hence y ∈ v || w ∪
pref (v || w) and v || w is thus limit-closed. ut

Theorem 28. Let u, v, w ∈ ∆∞. Then u || (v || w) = (u || v) || w.

Proof. If u, v, w are finite words, we have Corollary 11. If at least one of them is infinite, then both u || (v || w)
and (u || v) || w consist of infinite words only. Let x ∈ u || (v || w). Then Theorem 26(2) implies that pref (x) ⊆
pref (u) || pref (v || w). Thus, by Theorem 6, pref (x) ⊆ pref (u) || (pref (v) || pref (w)). Consequently pref (x) ⊆
(pref (u) || pref (v)) || pref (w) by Corollary 11 and pref (x) ⊆ pref (u || v) || pref (w) by Theorem 6. Finally, since
u || v and {w} are limit-closed, Theorem 26(2) implies that x ∈ (u || v) || w. The converse inclusion follows from
the above and Theorem 3. ut

5 Discussion

In this paper we have considered a general shuffling operation for possibly infinite words, which is not necessarily
fair, and we have studied its limit behaviour. This has led to a characterization of shuffles in terms of the shuffles
of their prefixes, with the associativity of shuffling as an immediate corollary. This proof of the associativity of
shuffling is fully self-contained and it does not rely on the sometimes vague or not substantiated claims made in
the literature for related operations.

Associativity is of interest not only from a purely mathematical point of view. In fact, as mentioned in the
Introduction, our motivation to study the associativity of shuffling stems from the use of shuffling and some
of its variants to prove compositionality for different types of team automata [2, 4]. Team automata consist of
component automata that collaborate through synchronizations. These synchronizations can be freely chosen
depending on the specific protocol of collaboration to be modelled. In [3] we have defined different strategies for
choosing the synchronizations of a team automaton. To describe the behaviours of these team automata in terms
of the behaviours of their components, several types of ‘synchronized shuffling’ have been introduced in [2, 4].
The associativity of shuffling as defined in this paper, is the basis for proofs of the associativity of some variants
of synchronized shuffling in the Ph.D. thesis of the first author [2]. The associativity of these variants, in their
turn, is crucial to prove that several types of team automata satisfy compositionality in [2, 4] (in the latter only
finitary behaviours are considered).
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Since the behaviours of team automata and their components are prefix-closed languages representing ongoing
behaviours, we have focussed on the prefix properties of shuffles. As follows from Theorem 6, the shuffle operation
is sound in the sense that indeed all prefixes of an infinite shuffle appear as shuffles of finite words (behaviours).
In addition, the key Lemma 22 and its Corollary 24 show that every word which is represented through its finite
prefixes in the shuffles of finite words is a shuffle of their limits (component behaviours). Together they provide a
tool to investigate infinite shuffles as limits of finite shuffles. In a forthcoming paper we intend to address similar
issues for the more involved shuffles with synchronization.
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