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Abstract. Stochastic model checking is a recent extension of traditional model-
checking techniques for the integrated analysis of both qualitative and quantita-
tive system properties. In this paper we show how stochastic model checking can
be conveniently used to address a number of usability concerns that involve quan-
titative aspects of a user interface for the industrial groupware system thinkteam.
thinkteam is a ready-to-use Product Data Management application developed by
think3. It allows enterprises to capture, organise, automate, and share engineering
product information and it is an example of an asynchronous and dispersed group-
ware system. Several aspects of the functional correctness, such as concurrency
aspects and awareness aspects, of the groupware protocol underlying thinkteam
and of its planned publish/subscribe notification service have been addressed in
previous work by means of a traditional model-checking approach. In this pa-
per we investigate the trade-off between two different design options for granting
users access to files in the database: a retrial approach and a waiting-list approach
and show how stochastic model checking can be used for such analyses.

1 Introduction

Computer Supported Cooperative Work (CSCW) is an interdisciplinary research field
that deals with the understanding of how people work together, and the ways in which
computer technology can assist. This technology mostly consists of multi-user com-
puter systems called groupware [16]. Groupware is often classified according to the
time-space taxonomy Ellis [16], i.e.. (1) whether its users work together at the same
(synchronous) or at different (asynchronous) times and (2) whether they work together
in the same (co-located) or in different (dispersed) places. In this paper we deal with
thinkteam, which is an asynchronous and dispersed groupware system, as is email.

Recently there has been an increasing interest in using model checking for for-
mal verification of (properties of) groupware [6, 26, 27]. Some properties of interest
are related to important groupware design issues like user awareness and concurrency
control. In [7, 8] we have used a traditional model-checking approach, using the model
checker SPIN [22], to formalise and verify some properties specifically of interest for
the correctness of general groupware protocols, i.e. not limited to thinkteam’s context.

Many interesting properties of groupware protocols and their interfaces can be anal-
ysed a priori, i.e. before implementation, by means of a model-based approach and
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model-checking techniques. There are, however, usability issues that are influenced by
the performance of the groupware system rather than by its functional behaviour. One
such issue was raised by the analysis of thinkteam with a traditional model-checking
approach in [7, 8]. It was shown that the system could exclude a user from obtaining a
file simply because other users competing for the same file were more ‘lucky’ in their
attempts to obtain the file. Such behaviour was explained by the fact that users were
only provided with a file-access mechanism based on a retrial principle. While analy-
sis with traditional model checking can be used to show that such a problem exists, it
cannot be used to quantify the effect that it has on the user. In other words, it cannot be
used to find out how often, in the average, a user needs to perform a retry in order to get
a single file. Of course, the number of retries a user has to perform before obtaining a
file is an important ingredient for measuring the usability of the system.

In this paper we address the retrial problem by means of stochastic model checking.
This is a relatively new extension of traditional model checking that allows also for
the analysis of quantitative properties of systems such as those related to performance
and dependability issues [10, 20, 24]. Other work on the use of stochastic modelling for
usability analysis has been performed in [11], where it has been shown that Markov
models and traditional Markov-chain analysis can be used to obtain measures that give
an indication of how hard it is for a user to use certain interactive devices. In [14],
stochastic modelling has been used to analyse the finger-tracking interface of a white-
board with augmented reality. The analysis was based on stochastic process algebra
models with general (i.e. not necessarily exponential) distributions and discrete event
simulation. The main purpose of this paper is to show that stochastic model checking
can be a convenient model-based analysis technique to address usability issues that in-
volve quantitative measures. We will explain how such analysis can be performed in
the context of a simple but relevant industrial case study. In a further study we plan
to collect more detailed statistical information on typical use of thinkteam in practice
in order to calibrate the models for the analysis of specific situations. The current pa-
per shows the formal specification of users and the system and their interactions, the
formalisation of relevant quantitative properties and a number of numerical results.

2 thinkteam

In this section we present a brief overview of thinkteam. For more information we refer
the reader to [5, 7, 8] and http://www.think3.com/products/tt.htm.

thinkteam is think3’s Product Data Management (PDM) application catering the
document management needs of design processes in the manufacturing industry. Con-
trolled storage and retrieval of documents in PDM applications is called vaulting, the
vault being a file-system-like repository. Next to providing a secure and controlled
storage environment, vaulting must prevent inconsistent changes to the document base
while still allowing maximal access compatible with the business rules. This is imple-
mented in thinkteam’s underlying groupware protocol by a standard set of operations:

get – extract a read-only copy of a document from the vault,
import – insert an external document into the vault,
checkOut – extract a copy of a document from the vault with the intent to modify it,



unCheckOut – cancel the effects of a previous checkout,
checkIn – replace an edited document in the vault, and
checkInOut – replace an edited document in the vault, but retaining it checked out.

It is important to note that access to documents (via a checkOut) is based on the ‘retrial’
principle: currently there is no queue or reservation system handling the requests for
editing rights on a document. thinkteam typically handles some ������������� documents
for ��� - ����� users. A user rarely checks out more than ��� documents a day, but she can
keep a document checked out from anywhere between 	 minutes and a few days.

To maximize concurrency, a checkOut in thinkteam creates an exclusive lock for
write access. An automatic solution of the write access conflict is not easy, as it is criti-
cally related to the type, nature, and scope of the changes performed on the document.
Moreover, standard but harsh solutions—like maintaining a dependency relation be-
tween documents and use it to simply lock all documents depending on the document
being checked out—are out of the question for think3, as they would cause these docu-
ments to be unavailable for too long periods of time. For thinkteam, the preferred solu-
tion is thus to leave it to the users to resolve such conflicts. However, a publish/subscribe
notification service would provide the means to supply the clients with adequate infor-
mation by (1) informing clients checking out a document of existing outstanding copies
and (2) notifying the copy holders upon checkOut and checkIn of the document.

In [7, 8] we studied the addition of a lightweight and easy-to-use publish/subscribe
notification service to thinkteam and we verified several correctness properties. These
properties addressed issues like concurrency control, awareness, and denial of service.
Most properties were found to hold, with the exception of one concurrency-control and
a denial-of-service property. The problem with the concurrency-control property arises
when a user simply ‘forever’ forgets to checkIn the file it has checked out, which means
that the lock on this file is never released. In thinkteam, such a situation is resolved by
the intervention of a system administrator.

The problem with the denial-of-service property is that it may be the case that one
of the users can never get its turn to, e.g., perform a checkOut, because the system is
continuously kept busy by the other users, while this user did express its desire to per-
form a checkOut. Such behaviour forms an integral part of the thinkteam protocol. This
is because access to documents is based on the ‘retrial’ principle: thinkteam currently
has no queue or reservation system handling simultaneous requests for a document.
Before simply extending thinkteam with a reservation system, it would be useful to
know (1) how often, in the average, users have to express their requests before they are
satisfied and (2) under which system conditions (number of users, file processing time,
etc.) such a reservation system would really improve usability. We come back to this.

3 Stochastic Analysis

Traditionally, functional analysis of systems (i.e. analysis concerning their functional
correctness) and performance analysis have been two distinct and separate areas of re-
search and practice. Recent developments in model checking, in particular its extension
to address also performance and dependability aspects of systems, have given rise to a
renewed interest in the integration of functional and quantitative analysis techniques.



A widely used model-based technique for performance analysis is based on Contin-
uous Time Markov Chains (CTMCs). CTMCs provide a modelling framework, proved
to be extremely useful for practical analysis of quantitative aspects of system behaviour.
Moreover, in recent years proper stochastic extensions of temporal logics have been pro-
posed and efficient algorithms for checking the satisfiability of formulae of such logics
on CTMCs (i.e. stochastic model checkers) have been implemented [10, 20, 24].

The basis for the definition of CTMCs are exponential distributions of random vari-
ables. The parameter which completely characterises an exponentially distributed ran-
dom variable is its rate � , which is a positive real number. A real-valued random vari-
able � is exponentially distributed with rate � —written ���������
	 —if the probability
of � being at most � , i.e. Prob �������	 , is ����������� if ��� � and is � otherwise, where
� is a real number. The expected value of � is � ��� . Exponentially distributed random
variables enjoy the so called memoryless property, i.e. Prob ��� �!�#"$�&%�'
� �!��	)(
Prob ���*�+��%,	 , for � �-�.%�� � .

CTMCs have been extensively studied in the literature (a comprehensive treatment
can be found in [23]; we suggest [19] for a gentle introduction). For the purposes of the
present paper it suffices to recall that a CTMC / is a pair �10 �-23	 where 0 is a finite
set of states and 254608790!: IR ;
< is the rate matrix. The rate matrix characterises
the transitions between the states of / . If 2���=��&= % 	�>( � , then it is possible that a
transition from state = to state =?% takes place, and the probability of such a transition to
take place within time � , is �@�A� �6BDCFE&G EIHKJIL � . If 2��M=��N=O%,	�( � , then no such a transition
can take place.1 We would like to point out that the traditional definition of CTMCs
does not include self-loops, i.e. transitions from a state to itself. On the other hand, the
presence of such self-loops does not alter standard analysis techniques (e.g. transient
and steady-state analyses) and self-loops moreover turn out to be useful when model
checking CTMCs [4]. Therefore we will allow them in this paper.

Usually CTMCs are not obtained in a direct way, due to the increasing complexity
of the analysed systems, but instead generated automatically from higher-level specifi-
cations given in languages such as e.g. stochastic Petri nets, stochastic process algebras
or stochastic activity nets [9, 25]. Our approach is no different. We specify our model
of thinkteam’s underlying groupware protocol in the stochastic process algebra PEPA
(Performance Evaluation Process Algebra) [21]. This specification is consequently read
into a stochastic model checker, which then automatically builds a CTMC from it.

4 Stochastic Model Checking

In the model-checking approach to performance and dependability analysis a model of
the system under consideration is required together with a desired property or perfor-
mance/dependability measure. In case of stochastic modelling, such models are typi-
cally CTMCs or high-level specification languages to generate them, while properties
are usually expressed in some form of extended temporal logic. Here we use Continu-
ous Stochastic Logic (CSL) [2, 3], a stochastic variant of the well-known Computational
Tree Logic (CTL) [12]. CTL allows to state properties over states as well as over paths.

1 This intuitive interpretation is correct only if there is only one transition originating from P . If
this is not the case, then a race condition arises among all transitions originating from P .



CSL extends CTL by two probabilistic operators that refer to the steady-state and
transient behaviour of the system under study. The steady-state operator refers to the
probability of residing in a particular state or set of states (specified by a state formula)
in the long run. The transient operator allows us to refer to the probability mass of the
set of paths in the CTMC that satisfy a given (path) property. To express the time span of
a certain path, the path operators until (� ) and next ( � ) are extended with a parameter
that specifies a time interval. Let � be an interval on the real line, � a probability value
and ��� a comparison operator, i.e. �����
	�� �  ��� � �� . The syntax of CSL is:

State formulae: �
��� ��������������������� ��!#"%$&�(')��*+�,!#"%$.-/'
� ��!#"0$&�+' : probability that � holds in steady state 13254* ��!#" $.-/' : probability that a path fulfills -613254

Path formulae: -7��� �98;:<�=�>�@?A:<�
8 : � : next state is reached at time B(CED and fulfills ���?A:<F : � holds along path until F holds at B5C6D

The meaning of atomic propositions ( G ), negation ( H ) and disjunction ( I ) is stan-
dard. Using these operators, other boolean operators like conjunction ( J ), implication
( K ), true (TRUE) and false (FALSE), and so forth, can be defined in the usual way.
The state formula 0MLONQP ��R 	 asserts that the steady-state probability for the set of states
satisfying R , the R -states, meets the bound ���S� . TULONQP���V 	 asserts that the probability
measure of the set of paths satisfying V meets the bound ���S� . The operator T LONQP �XW 	
replaces the usual CTL path quantifiers Y and Z . In CSL, the formula T�; � �.V#	 holds if
almost all paths satisfy V . Moreover, clearly Y[V holds whenever T]\6< �.V#	 holds.

The formula R]�_^a` is satisfied by a path if ` holds at time �[�b� and at every pre-
ceding state on the path, if any, R holds. In CSL, temporal operators like c , d and their
real-time variants c ^ or d ^ can be derived, e.g., T LeNQP ��c ^ R 	 (�T LeNQP � TRUE � ^ R 	 andT ; P �Xd)^fR 	 (gTih �N� P �jc]^MH(R 	 . The untimed next and until operators are obtained by
�kR+(��l^MR and R � ��R5m (nR � �_^�R5m for � (po ���rqA	 . In a variant of CSL the proba-
bility � can be replaced by ‘ s ’, denoting that one is looking for the value of the proba-
bility rather than verifying whether the obtained probability respects certain bounds.

The model checker PRISM [24] is a prototype tool that supports, among others,
the verification of CSL properties over CTMCs. It checks the validity of CSL proper-
ties for given states in the model and provides feedback on the calculated probabilities
of such states where appropriate. It uses symbolic data structures (i.e. variants of Bi-
nary Decision Diagrams). PRISM accepts system descriptions in different specifica-
tion languages, among which the process algebra PEPA and the PRISM language—a
simple state-based language based on the Reactive Modules formalism of Alur and
Henzinger [1]. An example of an alternative model checker for CSL is ETMCC [20].

5 Stochastic Model of thinkteam—The Retrial Approach

In this section we describe the stochastic model of thinkteam for the retrial approach,
after which we perform several analyses on this model. We use the stochastic process



algebra PEPA to specify our model. In PEPA, systems can be described as interactions
of components that may engage in activities in much the same way as in other pro-
cess algebras. Components reflect the behaviour of relevant parts of the system, while
activities capture the actions that the components perform. A component may itself be
composed of components. The specification of a PEPA activity consists of a pair (action
type, rate) in which action type symbolically denotes the type of the action, while rate
characterises the exponential distribution of the activity duration. Before explaining our
model, we briefly describe the PEPA language constructs that we will use. For a more
detailed description of these constructs we refer the reader to [21].

The basic mechanism for constructing behaviour expressions is by means of prefix-
ing. The component ��� ��� 	 W � carries out activity ��� ��� 	 , with action type � and duration� � determined by rate � . The component subsequently behaves as component � .

The component � "�� represents a system which may behave either as component
� or as component � . The continuous nature of the probability distributions ensures
that the probability of � and � both completing an activity at the same time is zero.
The choice operator represents a competition (the race condition) between components.

The cooperation operator ��� 	�
�� defines the set of action types  on which
components � and � must synchronise or cooperate. Both components proceed in-
dependently with any activities that do not occur in  . In particular, when $(�� then
��� 	�
�� thus denotes parallel composition and the shorthand notation � ' '�� is used.
The expected duration of a cooperation where activities are shared (i.e.  >(�� ) will
be greater than or equal to the expected durations of the corresponding activities in the
cooperating components. A special case is the situation in which one component is pas-
sive (i.e. has the special rate � ) w.r.t the other component. In this case the total rate is
determined by that of the active component only.

We are now ready to explain our model in detail. In Fig. 1 the models of the User
and CheckOut components are drawn as automata for reasons of readability.

1 2

0

1

0

User: CheckOut:

����������� � �!����"��#� �

�!��� " �%$&����(')��*+����,� � ��$&� ����� � �(-.�

����� " �(-.�

�!�('/�(-.�

Fig. 1. The retrial approach: automata of the User and the CheckOut components.

We consider the case that there is only one file, the (exclusive) access to which
is handled by the CheckOut component. A user can express interest in checking out
the file by performing a checkOut. This operation can either result in the user being
granted access to the file or in the user being denied access because the file is currently
already checked out by another user. In Fig. 1, the successful execution of a checkOut
is modelled by activity ��0�1 E �N�
	 , while a f ailed checkOut is modelled by ��02143 �N�
	 . The



exponential rate � is also called the request rate. If the user does not obtain the file, then
she may retry to check out the file, modelled by activity ��021 E ��� 	 in case of a successful
retry and by ��021.3���� 	 in case the checkOut f ailed. The exponential rate � is also called
the retrial rate. The checkIn operation, finally, is modelled by activity ��0 ����� 	 and the
exponential rate � is also called the file processing rate. The CheckOut component
takes care that only one user at a time can have the file in her possession. To this aim, it
simply keeps track of whether the file is checked out (state � ��� ) or not (state � ��� ). When
a User tries to obtain the file via the checkOut activity, then she is denied the file if it is
currently checked out by another user while she might obtain the file if it is available.

The formal PEPA specifications of the User and the CheckOut component, and the
composed model for three User components and the CheckOut component

� User ',' User ',' User 	 � 		��
��� G 
��� G 
 ^�� CheckOut

is given in [5]. These specifications are accepted as input by PRISM and then trans-
lated into the PRISM language. The resulting specification is given in [5]. From such a
specification PRISM automatically generates a CTMC with ��� states and 	�� transitions
that can be shown behaviourally equivalent for the purpose of transient and steady-state
analysis (strongly equivalent in [21]) to the much simpler CTMC given in Fig. 2(a).2
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� ��Retrial:

(a) The retrial approach.
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1,11,0

0,0

FIFOqueue:

*� $ $*
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(b) The waiting-list approach.

Fig. 2. (a)-(b) The CTMCs in case of � users for the two approaches of this paper.

The states of this CTMC are tuples ��� ����� with � denoting whether the file is checked
out ( �+( � ) or not ( �+( � ) and � � 	 � � ��� �  denoting the number of users currently
retrying to perform a checkOut. Note, however, that when a user inserts the file she has
checked out back into the Vault via a checkIn activity, the CheckOut component does
allow another user to checkOut the file but this need not be a user that has tried before
to obtain the file. In fact, a race condition occurs between the request and retrial rates
associated to the checkOut activity (cf. states � ��� ��� and � � � ��� ). Note also that once the
file is checked in, it is not immediately granted to another user, even if there are users
that have expressed their interest in obtaining the file. In such a situation, the file will
remain unused for a period of time which is exponentially distributed with rate � " � .

2 Moreover, the CTMC obtained by removing the self-loops from that of Fig. 2(a) is frequently
used in the theory of retrial queues [17, 18, 23].



We use the stochastic model and the stochastic logic to formalise and analyse vari-
ous usability issues concerning the retrial approach used in thinkteam. In this context
it is important to fix the time units one considers. We choose hours as our time unit.
For instance, if � ( 	 this means that a typical user keeps the file in its possession for� ����	@( � � minutes on the average.

5.1 Analyses of Performance Properties

We first analyse the probability that a user that has requested the file and is now in ‘retry
mode’ (state � ��� of the User component), obtains the requested file within the next five
hours. This measure can be formalised in CSL as (in a pseudo PRISM notation):3

T���� �Xo TRUE ���
	9� User STATE ( �O	 	 User STATE ( � ���	 �
which must be read as follows: “what is the probability that path formula TRUE � �
	
� User STATE ( �?	 is satisfied for state User STATE ( � ?”.

The results for this measure are presented in Fig. 3(a) for request rate � ( � (i.e. a
user requests the file once an hour on average), retrial rate � taking values � , 	 and ���
(i.e. in one hour a user averagely retries one, five or ten times to obtain the file), file
processing rate �9( � (i.e. a user in the average keeps the file checked out for one hour)
and for different numbers of users ranging from � to � � .

Clearly, with an increasing number of users the probability that a user gets her file
within the time interval is decreasing. On the other hand, with an increasing retrial rate
and an invaried file processing rate the probability for a user to obtain the requested file
within the time interval is increasing. Further results could easily be obtained by model
checking for different rate parameters that may characterise different profiles of use
of the same system. In particular, this measure could be used to evaluate under which
circumstances (e.g. when it is known that only a few users will compete for the same
file) a retrial approach would give satisfactory results from a usability point of view.

A bit more complicated measure can be obtained with some additional calculations
involving steady-state analysis (by means of model checking). Fig. 3(c) shows the aver-
age number of retrials per file request for request rate � ( � , retrial rate � taking values
	 and ��� , file processing rate � ranging from � to � � and for ��� users. The measure has
been computed as the average number of retries that take place over a certain system
observation period of time  divided by the average number of requests during  . To
compute the average number of retries (requests, resp.) we proceeded as follows. We
first computed the steady-state probability � ( � , resp.) of the user being in ‘retry mode’
(‘request mode’, resp.), i.e. � def( 0���� � User STATE ( � 	 ( � def( 0���� � User STATE ( � 	 ,
resp.). The fraction of time the user is in ‘retry mode’ (‘request mode’, resp.) is then
given by  7 � (  7�� , resp.). The average number of retries (requests, resp.) is then
��7� 76� ( �37�87�� , resp.). Hence the measure of interest is ����76��	�� �M� 7�� 	 .

It is easy to observe in Fig. 3(c) that the number of retrials decreases considerably
when the file processing rate is increased (i.e. when the users restitute, by means of a
checkIn, the file they had checked out after a shorter time). We also note that a relatively

3 Here and in the sequel, User STATE always refers to one specific user.



high file processing rate is needed for obtaining an acceptably low number of retrials in
the case of � � users that regularly compete for the same file.
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(c) Average number of retrials per file re-
quest in case of ��� users.
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(d) The retrial approach vs. the waiting-
list approach.

Fig. 3. (a)-(d) Results of the analyses performed for this paper.

The effect on the average number of retries is even better illustrated in Fig. 3(b),
where with a similar approach as outlined above the average number of retrials per file
request is presented for request rate � ( � , retrial rate � taking values 	 and � � , fixed
file processing rate �A( 	 and various numbers of users. Clearly, the average number
of retrials per file request increases sharply when the number of users increases.



6 Stochastic Model of thinkteam—The Waiting-List Approach

In this section we compare the stochastic model of the previous section to a stochastic
model for a waiting-list approach, which we describe next.

In contrast with our model for the retrial approach of Section 5, we now assume that
a user’s request to checkOut the file when it has already been checked out by another
user is put in a FIFO queue. The moment in which the file then becomes available, the
first user in this FIFO queue obtains the file. This implies the following changes w.r.t. the
model of Section 5. Since a user no longer retries to obtain the file after her initial
unsuccessful attempt to checkOut the file, the new User component has two states only,
viz. state � ��� is removed from the User component as given in Fig. 1. Moreover, since the
CheckOut component now implements a FIFO policy, the new CheckOut component
must keep track of the number of users in the FIFO queue. The full specifications of
the new User and CheckOut components can be found in [5]. Here we directly use the
strongly-equivalent CTMC for three users given in Fig. 2(b).

The state tuples of this CTMC have the same meaning as before, but states � ��� ���
and � ��� ��� no longer occur. This is due to the fact that, once the file is checked in, it is
immediately granted to another user, viz. the first in the FIFO queue.

The fact that we consider an exponential request rate � , an exponential file process-
ing rate � , one file, and three users means that we are dealing with a M 'M ' � ' � queueing
system [19, 23]. The CTMC of Fig. 2(b) is then its underlying CTMC and this type of
CTMC is also called a birth-death process [19, 23].

We now compare the two models w.r.t. the probability that there are users waiting to
obtain the file after a checkOut request. To measure this, we compute the probabilities
for at least one user not being granted the file after asking for it, i.e. the steady-state
probability � to be in a state in which at least one user has performed a checkOut but
did not obtain the file yet. In the retrial approach this concerns states � ��� ��� , � � � ��� , � �������
and � ��� ��� of the CTMC Retrial in Fig. 2(a), whereas in the waiting-list approach this
concerns states � ��� ��� and � ��� ��� of the CTMC FIFOqueue in Fig. 2(b). Hence this can
be expressed (again in a pseudo PRISM notation) as the CSL steady-state formula

� def( 0 ��� �Xo�� Retrial STATE ( � ��� ����	 ' � Retrial STATE ( � ��� ���-	 '
� Retrial STATE ( � ��� ����	 ' � Retrial STATE ( � ��� ����	��1	

in the retrial approach, while in the waiting-list approach the formula is

� def( 0 ��� �Qo � FIFOqueue STATE ( � ��� ����	 ' � FIFOqueue STATE ( � ��� ����	��1	
The results of our comparison are presented in Fig. 3(d) for request rate � ( � ,

retrial rate � (only in the retrial approach of course) ranging from � to � � , file processing
rate � taking values 	 and ��� and, as said before, � users.

It is easy to see that, as expected, the waiting-list approach outperforms the retrial
approach in all the cases we considered: The probability to be in one of the states
� ������� or � ��� ��� of the CTMC FIFOqueue of the waiting-list approach is always lower
than the probability of the CTMC Retrial of the retrial approach to be in one of the
states � ��� ��� , � � � ��� , � ��� ��� or � ��� ��� . Note that for large � the probability in case of



the retrial approach is asymptotically approaching that of the waiting-list approach, of
course given the same values for � and � . While we did verify this for values of � upto
����� , it is of course extremely unrealistic to assume that a user performs � ��� retries per
hour. We thus conclude that the time that a user has to wait ‘in the long run’ for the
file after it has performed a checkOut is always less in the waiting-list approach than
in the retrial approach. Furthermore, while increasing the retrial rate (i.e. reducing the
time inbetween retries) does bring the results for the retrial approach close to those for
the waiting-list approach, it takes highly unrealistic retrial rates to reach a difference
between the two approaches that is insignificantly small.

7 Conclusions and Further Work

In this paper we have addressed the formal analysis of a number of quantitative us-
ability measures of a small, but relevant industrial case study concerning an existing
groupware system for PDM, thinkteam. We have shown how the quantitative aspects
of the interaction between users and the system can be modelled in a process-algebraic
way by means of the stochastic process algebra PEPA. The model has been used to ob-
tain quantitative information on two different approaches for users to obtain files from
a central database; one based on retrial and one based on a reservation system imple-
mented via a FIFO waiting list. The quantitative measures addressed the expected time
that users are required to wait before they obtain a requested file and the average num-
ber of retries per file, for various assumptions on the parameters of the model. These
measures have been formalised as formulae of the stochastic temporal logic CSL and
analysed by means of the stochastic model checker PRISM.

The results show that, from a user perspective, the retrial approach is less conve-
nient than the waiting-list approach. Moreover, it can be shown that the situation for the
retrial approach rapidly deteriorates with an increasing number of users that compete
for the same file. The use of stochastic model checking allowed for a convenient mod-
ular and compositional specification of the system and the automatic generation of the
underlying CTMCs on which performance analysis is based. Furthermore, the combi-
nation of compositional specification of models and logic characterisation of measures
of interest provides a promising technique for a priori formal model-based usability
analysis where quantitative aspects as well as qualitative ones are involved.

We plan to apply the developed models and measures for the analysis of different
user profiles of the actual thinkteam system in collaboration with think3. Such a priori
performance evaluation is addressed also in [25], where stochastic Petri nets are the
model that is used to discuss usability aspects of users interacting with a non-groupware
system. In a further extension we also plan to deal with the quantitative effects of the
addition of a publish/subscribe notification service to thinkteam.
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