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Abstract. The analysis of usability aspects of multi-user systems, such as co-
operative work systems and pervasive systems, pose particular problems be-
cause group behavior of their users may have considerable impact on usability. 
Model-based analysis of such features leads to state-space explosion because of 
the sheer number of entities to be modeled when automatic techniques such as 
model checking are used. In this paper we explore the use of a recently  
proposed scalable model-based technique based on solving sets of Ordinary 
Differential Equations (ODEs).  Starting from a formal model specified using 
the Performance Evaluation Process Algebra (PEPA), we show how different 
groupware usage patterns may be modeled and analyzed using this approach. 
We illustrate how the approach can explore different design options and their 
impact on group behavior by comparing file access policies in the context of a 
groupware application. 

Keywords: Formal Methods, Model-based usability analysis, Performance 
Evaluation Process Algebra, Ordinary Differential Equations, Groupware  
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1   Introduction  

Tools for usability analysis in relation to one (or at most a few) users are by now 
relatively mature. However, to date, systematic techniques for analyzing systems, 
where there are many users and where the collective behavior of these users has an 
influence on the usability of the system, are currently undeveloped. Such techniques 
are becoming more necessary as the variety of co-operative work systems, multi-
player games, shared virtual spaces and pervasive systems grows. 

Collective behavior may have an impact on the usability of a system as it is per-
ceived by an individual. The effect of the behavior of other users may be to change 
the individual’s user interaction. Consider for example a groupware system that offers 
exclusive access to files by allowing users to get and lock files when files are avail-
able. If the lock is already given to another user, and the file is currently in use, then 
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the user will not be able to access the file until the other user has finished with it. In 
such situations users devise strategies to ensure that they will have the editing rights 
that they need when they need them. Alternatively they will schedule their work so 
that there is always something else that they can do in such circumstances. For exam-
ple, a strategy that might be feasible in this example would be to get hold of the file 
some time before it is needed. This greedy strategy would be effective for the individ-
ual, making it possible for them to carry out their work effectively, but it is not likely 
to be effective for the whole collaborative activity. 

Not only will the individual behavior of a user be affected by changes to the sys-
tem through its collective use, but the system can also have an effect on the collective 
behavior of the users. Indeed a system may be designed to achieve precisely this, 
consider for example a dynamic signage system such as [13] designed to facilitate 
evacuation of a building. The displays showing where people should go could be 
designed to change depending on volumes of people within different spaces in the 
building at any given moment. The displays will together modify the behavior of 
those in the spaces and thereby, if effective, achieve the most efficient and calm 
movement of people. 

Other factors may affect the usability of these multi-user systems. Usage patterns 
in relation to technology may also be induced by external factors. For example, in a 
collaborative design environment it is often the case that the collaboration takes place 
in a way that reflects project-oriented organization of the work. Projects tend to have 
different phases: creative phases in which artifacts are developed, which may require 
longer periods of file creation and modification; fine-tuning phases characterized by 
frequent but short accesses to a number of critical files. These different phases may 
lead to a shift between typical usage patterns of the system with a potential impact on 
its usability characteristics.  

Techniques are required that will enable an understanding of both qualitative and 
quantitative performance aspects of collective usability. In practice few studies have 
addressed collective behavior. Empirical studies either focus on individual interac-
tions within a system, for example exploring how a group of individuals use flight 
strips in air traffic management. These studies tend to use ethnographic techniques to 
provide a rich contextualized account of behavior (see [12] for example) or more 
anecdotal accounts of social behavior (see [16] in relation to social behavior using the 
Flickr photo-sharing service). On the other hand detailed statistical analyses of sys-
tems have been used to detect biases in their individual use (see for example [21] in 
relation to a mammography system). These studies are important in exploring patterns 
of behavior that arise from use of the system. They are time and resource intensive 
and require a live system. The question of the paper is how to analyze collective be-
havior of users in relation to a system prior to fielding the system.  

While formal models have been developed and explored that are relevant to model-
ing the interaction between an individual user and device in context (see e.g., [8,9]) 
and general behavior of users have been captured through normative task models (see 
e.g. [10,20]) the impact of modeling collective behaviors within interactive systems 
have not been studied. This issue becomes particularly important in ubiquitous sys-
tems, providing smart environments in which many users are immersed and which 
can have an important impact on the collective behavior of those involved.  This pa-
per focuses on the role that modeling approaches can take in enabling the analysis of 
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collective behavior during the early stages of design. The aim is that these techniques 
should be capable of providing a basis for usability evaluation in the face of different 
user strategies, when in different phases of collaboration and given different technol-
ogy designs. A groupware system similar to the one used already for illustration, 
provides an example of the use of the particular technique.  

The fundamental problem with formal modeling in relation to analyses of collec-
tive behaviors is how to deal with the state explosion that arises through attempts to 
model multiple instances of processes required to define the collective behavior. The 
paper explores a recently proposed scalable model-based technique, Fluid Flow 
Analysis [15]. This technique supports the analysis of many replicated entities with 
autonomous behavior that collaborate by means of forms of synchronization.  It builds 
upon a process-algebraic approach and adds techniques for quantitative analyses to 
those for behavioral analysis.  The technique has been successfully applied in areas 
such as large-scale Web Services [11,15], Service-Oriented Computing [23] and Grid  
applications [5,6], but also in Systems Biology [7].  

The technique consists in deriving automatically a set of Ordinary Differential 
Equations (ODEs) from a specification defined using Performance Evaluation Process 
Algebra (PEPA) [14]. The solution of the set of ODEs, by means of standard numeri-
cal techniques, gives insight into the dynamic change over time of aggregations of 
components that are in particular states. The approach abstracts away from the iden-
tity of the individual components.  The derivation of sets of ODEs  from PEPA speci-
fications, the algorithms to solve ODE equations and the generation of the numerical 
results are supported by the PEPA workbench [22]. 

The problem addressed in the paper is to explore different user strategies and 
groupware designs for a simplified version of a groupware system called thinkteam. 
Two different file access policies are analyzed and compared. thinkteam is part of the 
Product Lifecycle Management system of think3. The Fluid Flow technique can be 
used in this situation because the system being analyzed involves many replicated 
components that can be abstracted to relatively few states. The approach can be seen 
as complementary with model checking in general and stochastic model checking in 
particular. Stochastic model checking techniques have already been applied to the 
same example in earlier work [1,2,3,4]. While this approach allows a richer analysis 
of specific properties of smaller sets of processes, Fluid Flow allows broader analysis 
of larger aggregations. 

The paper introduces PEPA  in Section  2 and briefly explains the Fluid Flow in-
terpretation of PEPA models. In Section 3 the thinkteam example is introduced, fol-
lowed in Section 4 by a specification of the example. Section 5 describes the analysis 
and section 6 outlines briefly future directions. 

2   PEPA: A Process Algebra for Performance Evaluation 

In PEPA, systems can be described as interactions of components that may engage in 
activities in much the same way as in other process algebras. Components reflect the 
behavior of relevant parts of the system, while activities capture the actions that the 
components perform. A component may itself be composed of components. The 
specification of a PEPA activity consists of a pair (action type, rate) in which action 
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type denotes the type of the action, while rate characterizes the negative exponential 
distribution of the activity duration.  A positive real-valued random variable X is ex-
ponentially distributed with rate r  if the probability of X being at most t, i.e. Prob(X ≤ 
t), is 1-e-r×t  if t ≥ 0 and is 0 otherwise, where t is a real number. The expected value of 
X  is 1/r. Exponentially distributed random variables are more tractable because they 
have a memoryless property, i.e. Prob((X > t+t')|( X > t) ) = Prob(X > t) for t, t' ≥ 0.  
Exponential distributions are widely used in the modeling of the dependability and 
performance of real systems where they form the basis for Continuous Time Markov 
Chains (CTMC), see e.g. [21]. Furthermore, proper compositions of exponential dis-
tributions can be used for the approximation of any non-negative distribution. The 
PEPA expressions used in this article have the following syntax1: 

P ::= (a, r).P | P + P |  P ||{L} P | A 

Behavioral expressions are constructed through prefixing. Component (a, r).P carries 
out activity (a, r), with action type a and duration Δt determined by rate r. The aver-
age duration is given by 1/r. It is defined that Δt is an exponentially distributed ran-
dom variable with rate r. After performing the activity, the component behaves as P. 
Component P + Q models a system that may behave either as P or as Q, representing 
a race condition between components. The co-operation operator P ||{L} Q defines the 
set of action types L on which components P and Q must synchronize (or co-operate); 
both components proceed independently with any activity not occurring in L. The 
expected duration of a co-operation of activities a belonging to L  is a function of the 
expected durations of the corresponding activities in the components. Typically, it 
corresponds to the longest one (see [15] for definition of PEPA). An important special 
case is the situation where one component is passive (a rate Τ indicates this) in rela-
tion to another component. Here the total rate is determined by that of the active com-
ponent only. The behavior of process variable A is that of P, provided that a defining 
equation A=P is available for A. We introduce two shorthand notations. If the set L is 
empty P ||{L} Q is written as the parallel composition of P and Q: P|Q. If there are n 
copies of P in parallel co-operating with m parallel copies of Q  this is written as: 
P[n] ||{L} Q[m].  We will present PEPA specifications as stochastic state transition 
diagrams throughout the paper. Full PEPA specifications for the same system can be 
found in the full version of the paper [19].  

One of the advantages of a formal, high-level specification language with a fully 
formal semantics is that it lends itself to the application of different analysis and 
evaluation techniques while preserving its semantics. For example, PEPA specifica-
tions can be analyzed by means of a stochastic model checker, such as PRISM [18], 
and it can also be used for simulation.  As already mentioned PEPA specifications can 
be translated into sets of Ordinary Differential Equations (ODEs) [15]. A very brief 
summary of the approach follows; more details can be found in [19,15]. Suppose a 
PEPA model S1[n1] ||L1 S2[n2] ||L2 ... ||Lk-1 Sk[nk] is given, which is composed of  
n1+n2+ ...+nk sequential components. Each component Sj is defined by means of a 

                                                           
1  For technical reasons there are some restrictions on the nesting of parallel processes in the 

dialect of PEPA suitable for the translation to ODEs. For the sake of simplicity, we refrain 
from discussing the issue here and refer to [9] for details. The symbol for co-operation in 
PEPA is different from the one used in the present paper. 
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PEPA defining equation Sj = ... Sjr  ... Sjv  ... Sjw, where Sj, Sjr, Sjv  ...  Sjw are the relevant 
states of Sj; all such states are themselves defined by means of equations. The solution 
of the set of ODEs associated with the PEPA model is a set of continuous functions. 
In particular, there is one function S(t) for each state S occurring in the original speci-
fication and, for each time instant t, S(t) yields a continuous approximation of the 
total number of components which are in state S  at time t, given the initial conditions 
S1(0)= n1, S2(0)= n2, ... ,Sk(0)=nk. Notice that the fact that the values n1, n2, ..., nk of 
the number of components in the system (at the initial configuration) can be very high, 
e.g. in the order of millions, makes the approach intrinsically scalable. In the experi-
ments described in Section 5, results are compared with those obtained via discrete 
event simulation and are found to be comparable.  

3   The Thinkteam Groupware 

Thinkteam (http://www.think3.com/) is think3's Product Data Management (PDM) 
application. It is designed to deal with the document management needs of design 
processes in the manufacturing industry. Controlled storage and retrieval of docu-
ments in PDM applications is called vaulting, the vault being a file-system-like re-
pository. The system is designed to be a secure and controlled storage environment, in 
which vaulting prevents inconsistent changes to the document base while still allow-
ing maximal access compatible with business rules. A standard set of operations is 
supported (see Table 1).  

Access to files (via a checkOut) is based on the retrial principle: no queue or res-
ervation system exists to handle the requests for editing rights. thinkteam typically 
handles some 100,000 files for 20-100 users. A user rarely checks out more than 10 
files a day, but can keep a file checked out for periods from a few minutes to a few 
days. Log-file analysis of typical use indicated that only a small subset of the files are 
accessed regularly for editing. Files are typically shared by several users ranging from 
2 to 5 with peaks of up to 17. 

Table 1. Thinkteam user operations 

Operation Effect 
get extract a read-only copy of a file from the Vault 
import insert an external file into the Vault 
checkout extract a copy of a file from the Vault with the intent of modifying it

(exclusive, i.e. only one checkOut at a time is possible) 
unCheckOut cancel the effects of the preceding checkOut 
checkIn replace an edited file in the Vault (the file must previously have been 

checked out) 
checkInOut replace an edited file in the Vault, while at the same time retaining it

as checked out 

To maximize concurrency, a checkOut in thinkteam creates an exclusive lock for 
write access. An automatic solution of the write access conflict is not easy, as it is 
critically related to the type, nature, and scope of the changes performed on the file. 
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Moreover, standard but harsh solutions - like maintaining a dependency relation be-
tween files and using it to simply lock all files depending on the file being checked 
out - are out of the question for think3, as they would cause these files to be unavail-
able for unacceptably long periods. In thinkteam, the solution is to leave it to the users 
to resolve such conflicts. However, a publish/subscribe notification service would 
provide the means to supply the Clients with adequate information by (1) informing 
Clients checking out a file of existing outstanding copies and (2) notifying the copy 
holders upon checkOut and checkIn of the file. [3] adds a lightweight and easy-to-use 
publish/subscribe notification service to thinkteam and verifies several correctness 
properties such as concurrency control, awareness, and denial of service. Denial-of-
service is possible in this system in that one of the users can never get a turn to per-
form a  checkOut.  This may happen because the system is continuously kept busy by 
other users. Access to files is based on  retrial. The usability aspects of the two file 
access policies need to be studied under different assumptions about how the group is 
using the system. In [1] two such usability aspects are studied; (1) how often, on aver-
age, users have to express their requests before they are satisfied and (2) under which 
system conditions (number of users, file editing time, etc.) such a reservation system 
would really improve usability. In that work a stochastic model-checking approach is 
used and a limited model with up to ten users competing for one file is analyzed. In 
this paper we investigate a complementary analysis based on the Fluid Flow approach 
were we study models with a much larger number of users and files.  

4   Modeling File Access Policies 

A typical thinkteam user makes requests for edit rights on files using checkOut opera-
tions. After editing, the file is inserted back into the vault by a checkIn operation.  
Furthermore, a typical file manager is ready to receive a request from a Client and 
grants this request. It then locks the file for other Clients until it is returned to the 
vault. Two types of file manager will first be considered. The first supports retrial 
while the second supports a file reservation system based on a finite queue. It is as-
sumed that the file manager is always able to provide a timely response to the Client 
on the availability of the file, be it positive or negative. This is modeled using passive 
rates as explained in Section 2. 

4.1   The Retry Policy 

Figure 1 describes models of a Client and a FileManager supporting the Retry policy. 
This particular model will be called the “liberal retrial model” in what follows. PEPA 
specifications corresponding to all the stochastic state transition diagrams presented in 
this paper can be found in [19]. The Client initially tries to checkOut a file. This can 
be successful (cos) or fail (cof). The rate a denotes the access rate and characterizes 
the time that passes between the last  checkIn of a file and the next access to a file. In 
other words, it represents the time that a Client is busy with activities other than re-
questing edit rights for a file and modifying it. If the Client has successfully received 
edit rights to the file, she works on it for a while and checks the file in. The time in-
volved in this activity is modelled by the rate w.  If the edit rights are not granted, the 
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Client tries again repeatedly with time intervals characterised by rate r, the retry rate. 
The FileManager initially is in a state in which the file is free and can accept a check-
Out request from a Client. It then moves to a state representing that the file is now 
locked (FMbusy) in which further Clients' requests result in a failed checkOut (cof) 
until the file is checked in (ci). 

 

Fig. 1. From left to right: Stochastic Automata of  Client and FileManager components 

All activities of the FileManager have a passive rate (T), they adapt to any rate in-
duced by the Clients.  The model abstracts from the identity of the Clients by not 
keeping track of which Client exactly is requesting which file. The model of the Cli-
ent behavior does not require that a Client's retry activity is aiming at obtaining the 
same file. In fact, it models Clients that try to obtain whatever file they want every 
time they are making a request. This can be a request for the same file or for any other 
file, free or occupied. In this sense the model differs from the one we presented in [1], 
where the fact that there was only one file implied that all three Clients are trying to 
get the same file. This abstraction can be achieved without loss of generality given the 
volumes of processes. A composed model with 90 Clients competing for 30 files can 
now be expressed using the PEPA co-operation operator:  Client[90] ||{cos,ci,cof} 

FMfree[30].   
A modified specification of the Retry model (the waiting retry model) is given in 

Figure 2. Here when a checkOut attempt fails (cof), the Client  waits on average an 
amount of time equal to the length of a typical editing session (1/w) before trying 
again. This is modeled by the pair of states RetryFail and Retry together and related 
transitions. This model approximates a situation in which Clients keep on trying to 
obtain a particular file because, on average, they have to wait for such a file at least 
for the duration of one editing session. It could be argued that a Client may be ‘lucky’  
 

 

Fig. 2. From left to right: Stochastic Automata of Client and FileManager components 
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and wait less time when the Client that is currently editing has almost finished. Be-
cause the exponential distributions are memoryless the same rate w modeling the 
working time also models the remaining working time. As in the liberal Retry model 
we can express the composed model with 90 Clients and 30 FileManagers as Cli-
ent[90] ||{cos,ci,cof} FMfree[30].  

4.2   The Waiting-List Policy 

Figure 3 models the Waiting-list policy. The model of the FileManager supporting 
this policy is given in Figure 4. The Client may initially achieve: (1) a successful 
checkOut of the requested file (cos), (2) an unsuccessful checkOut, but placement in 
the waiting list (cof), or (3) a complete failure because the waiting list for the file is 
full (qf). In the first case, the Client edits the file and checks it in as before. In the 
second case, the Client waits until a notification arrives saying that it is the Client's 
turn to edit the file (trn). In the third case the Client has to try again to get the file or 
to be put on the waiting list.  The model of the FileManager that supports the Waiting-
list policy includes a queue. In this specific case one Client can be editing the file and 
at most two other Clients may be in the queue. Initially the file is free and a checkOut 
request is successful (cos). If a further request arrives the request is placed in the 
waiting list (cof) modeled by state FMbusyW1. If yet a further request arrives before 
the file is checked in it is placed in the list as well, modeled by state FMfullW2, de-
noting that the list is now full and two Clients are waiting for write access.  Any fur-
ther requests are answered with a ‘queue full’ message (qf). 

 

Fig. 3. Client component 

When the file is checked in while the FileManager is in state FMfullW2, it moves 
to state FMfullW2bis from which a notification is sent to the next Client that was 
waiting for the file (trn). We know that such a Client exists because Clients that re-
ceive a (cof) are waiting for such a notification before they can do other things.  The 
model Client[90] ||{cos,ci,cof,qf,trn} FMfree[30] now takes the new definitions for Client 
and FMfree. 

This model is not concerned with exactly which Client gets the notification. In fact, 
when abstracting from identity, any Client that is waiting for a notification will do, 
because on average for every Client that in theory would have received the notifica-
tion ‘before its turn’ there is an equivalent one that receives it later than would be  
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Fig. 4. The FileManager 

preferred.  In daily life Clients do care about such a random assignment of turns, but 
note that for the purpose of the analysis we only require that Clients wait until they 
receive a notification.  We can correctly abstract from the identity of the Clients (and 
files) because we are only interested in the number of Clients that are in a certain 
state. This provides an indication of the performance of the overall system. To make 
this clearer, consider the following example. If ten people stand in a queue, each with 
their numbered ticket, the length of the queue is not influenced by two people ex-
changing their tickets (or their places). If we have two queues, their length is also not 
influenced by the exchange of two people, one from each queue. In the case of our 
model therefore we do not need to model in which queue the Client is. In this model  
it is necessary to synchronize also on the actions denoting queue full (qf) and next  
turn (trn).  

5   Analysis of File Access Policies in Thinkteam 

The models in Section 4 can be used to explore the advantages and disadvantages of 
alternative strategies giving a perspective on the collective usability of these different 
strategies.  Analysis using the PRISM stochastic model checker with a limited number 
of files and Clients is described in [1]. The specifications are also amenable to dis-
crete event simulation.  In this section we present the results of the Fluid Flow analy-
sis. This analysis provides information about how many Clients are editing  a file or 
are waiting in a queue over time. These numbers depend on the typical usage patterns 
of the system, which in their turn can be characterized by the values of the parameters 
of the model.  The following assumptions are made about usage patterns, that  

 The average time between a checkIn  and the next request is 2 hours (i.e. rate 
a = 0.5) 

 The system is used by 90 Clients that compete for 30 files.  
 The retry rate r is 5×a   
 Editing sessions of different average duration 1/w 
 Each Client has at any  moment at most one file checked out.  

In addition in the case of the Waiting-list model we assume that there can be at most 
one Client working on a file and that there can be at most two Clients in the queue 
before it is full.  



 A Fluid Flow Approach to Usability Analysis of Multi-user Systems 175 

 

5.1   Analysis of the Waiting-List Policy 

Results show average durations of editing sessions of  4 hours (Figure 5(a)) and 5 
minutes (Figure 5(b)). All other assumptions are invariant. The graphs show how an 
initial situation of the Waiting-list model with 90 Clients and 30 free files evolves 
over 20 hours. Each curve shows the evolution of the number of processes in each 
state described in the specification of section 4. A number of observations can be 
made about the number of Clients who are editing files, waiting in queues or  busy 
trying to get a file. In all cases stability occurs within an hour or two. We can see in 
the longer sessions (Figure 5(a)): 

1. A steep decrease in the number of Clients  involved in other activities, drop-
ping from 90 initially to a stable 6.5 

2. A steep decrease in the number of free files from 30 to almost zero (arising 
for the fact that so many Clients are competing for files and are involved in 
relatively long editing sessions) 

3. The number of Clients spending their time waiting in some queue is rela-
tively high tending to approximately 52 

4. The queues themselves are quite full, i.e. approximately 26 of the 30 queues 
are full in the long run.  

 

 

                                        (a)                                                                     (b) 

Fig. 5. ODE analysis of Waiting-list model, number of processes  in each state with Clients 
editing files for:  (a) 4 hours on average; (b) 5 minutes on average 

In the shorter sessions (Figure 5(b)): 10 files are actually being edited at any time 
and the Clients are hardly wasting any time in the queues obtaining the files they 
need. This situation may of course change rapidly when shorter editing times are 
combined with much more frequent requests for files.  

5.2   Analysis of the Retry Policy 

The liberal Retry policy (Figure 6) shows at first sight a similar pattern to the Wait-
ing-list policy. In the case of long editing sessions of about 4 hours on average we 
observe: 
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1. A rapid decrease in the number of  users performing other activities than try-
ing to get files and edit them 

2. The available files are quickly occupied  
3. Approximately 45 Clients are at any time busy (re)trying to obtain files  
4. In editing sessions of 5 minutes there remains a considerable number of Cli-

ents (about 12) busy retrying to obtain files, compared with the Waiting-list 
policy under the same circumstances in that model almost no Clients are 
waiting in a queue.  

5.3   Comparing the Usability of the Two File Access Policies 

In summary the liberal Retry model and the Waiting-list model both tend toward a 
stable situation in relation to the number of processes that are in certain states at any 
moment. In Figure 7(a) we compare the usability of the liberal Retry model (LRM) 
and the Waiting-list model (WLM) by showing the number of ‘free Clients’ (series 
labelled by FinLRM and FinWLM respectively), the number of working Clients (se-
ries labelled by WinLRM and WinWLM respectively)  and waiting or retrying Clients 
(series labelled by RinLRM and WRinWLM respectively) after 20 hours of operation.  
 

 

                                          (a)                                                                    (b) 

Fig. 6. ODE analyses for the liberal Retry policy for number of processes in each state editing 
files for (a) 4 hours on average (b) 5 minutes on average 

These numbers are shown under different assumptions on the average duration of 
the edit sessions for both the liberal Retry model and the Waiting-list model. Note that 
the average edit time ranges from 10 hours on average on the left, to 5 minutes on the 
right of the figure. The liberal Retry model appears to outperform the Waiting-list 
model when the duration of the edit time is more than approximately 20 minutes. This 
is because there are more Clients waiting for a file or involved in retry in the Waiting-
list model than in the Retry model. The number of Clients working on a file is the 
same when the edit time is more than one hour, and the files are in that case all 
checked out. This result can be explained by the fact that in the liberal Retry model, 
when many files are checked out, the Client can in every retry attempt have a possi-
bility to obtain a free file when available. In the Waiting-list model the Client is 
forced to stay in a queue and wait until an occupied file is again available. The Retry 
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model represents a strategy in which a Client is more free to dynamically adapt their 
work to the situation.  

The situation changes considerably, however, for average editing periods shorter 
than approximately 20 minutes. We can observe then that there are fewer Clients 
editing a file in the Retry model than in the Waiting-list model. In fact, in the Wait-
ing-list model for edit sessions of less than 20 minutes very few Clients need to wait 
for a file, whereas a relatively large number of Clients are retrying in the Retry model. 
This is due to the fact that Clients do not get notified about the fact that a file became 
available and are wasting time in between consecutive retries. In the Waiting-list 
model, the waiting Clients are immediately informed about the availability of the file 
of interest. Figure 7(b) shows the results comparing the Waiting-Retry model (WRM) 
with the Waiting-list model (WLM).  
 

 

Fig. 7(a). Comparison of policies: liberal Retry vs. Waiting-list 

The series shows the number of ‘free Clients’ (series labelled by FinWRM and 
FinWLM respectively), the number of working Clients (series labelled by WinWRM 
and WinWLM respectively) and waiting or retrying Clients (series labelled by 
WRinWRM and WRinWLM respectively) after 20 hours of operation. We can ob-
serve that for edit sessions that last more than one hour the two policies have now a 
more similar performance. The Waiting-Retry model still gives slightly better per-
formance than the Waiting-list model when looking at the Clients who  are free or 
busy retrying/waiting.  This may be explained by the fact that we required that Clients 
in the Waiting-Retry model wait only for the duration of one session whereas when 
all files are occupied it is much more likely that Clients should wait for two editing 
sessions. This is the case for the Waiting-list model.  For editing sessions of less than 
one hour, when not all files are continuously occupied, it is clear that the Waiting-
Retry model has worse usability performance than the Waiting-list policy in the sense 
that Clients waste more time in retry activity than they would waiting in a queue in 
the Waiting-list model. Again, this is due to the fact that Clients do not know how 
long they should wait before attempting another checkOut. So, even if the file of  
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Fig. 7(b). Comparison of policies: Waiting Retry vs. Waiting-list 

interest is already available, Clients keep waiting before attempting a next checkOut 
request. In the Waiting list policy instead, Clients are immediately notified about the 
availability of the desired file, and therefore,  on average, they are wasting less time. 

6   Conclusions and Further Research  

We have used the Performance Evaluation Process Algebra (PEPA) to develop com-
bined user and system models to investigate usability aspects of multi-user systems 
with a large number of users. This has been achieved by solving sets of Ordinary 
Differential Equations that are automatically derived from PEPA specifications. This 
analysis allows for the evaluation of systems with a very high number of replicated, 
independent components at the cost of abstracting from the identities of these compo-
nents. We have illustrated how the analysis technique can be used to inform design 
choices for user interaction in multi-user systems where user behavior may directly 
affect usability. Different usage patterns may influence performance aspects of 
groupware systems that are directly relevant to its usability. We have shown how a 
file access policy based on a retrial principle and one based on waiting lists can be 
modeled and their effects on usability of the overall system can be compared for dif-
ferent assumptions on usage patterns. The ODE analysis results show that for usage 
patterns where in the long run not all files are checked out, the Waiting-list policy 
makes users waste less time in waiting/retry activities than the Retry policy would 
under the same circumstances. Such a comparison was made by analyzing the number 
of Clients that are involved in certain activities at any time. These activities corre-
spond to particular states in the respective models.   

In this paper we explored some initial ideas for the application of the ODE tech-
nique to the analysis of usability aspects of multi-user systems. We think that the 
results are encouraging and we plan to investigate their use also in more extended 
case studies. In particular we are interested in using this technique to explore smart 
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spaces, and in particular how a ubiquitous system might affect the collective behavior 
of users within the smart spaces. First considerations in the context of a dynamic 
context sensitive guidance system can be found in [13]. 
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