Special Theme: Evolving Software

40

Guaranteeing Correct Evolution of Software

Product Lines

by Maurice ter Beek, Henry Muccini and Patrizio Pelliccione

Researchers from the Software Engineering and Architecture group, University of L'Aquila, together
with the Formal Methods and Tools group of ISTI-CNR are developing a novel approach that extends
and adapts assume-guarantee reasoning to evolving SPLs in order to guarantee resilience against
changes in the product environment. The proposal is to selectively verify and test assume-guarantee
properties over only the components affected by the changes.

Software Product Lines (SPLs) are part
of an SPL Engineering approach aimed
at cost effective development of soft-
ware-intensive products that share an
overall reference model. Variety is
achieved by identifying variation points
as places in the Product Line
Architecture (PLA) where specific prod-
ucts are built by choosing between sev-
eral optional or alternative features.

While many approaches have been pro-
posed to economize on the validation of
SPL products by exploiting product sim-
ilarities and proper variability manage-
ment, ensuring the resilience of products
of an evolving SPL is an ongoing
problem. This is illustrated in Figure 1
which shows a model problem, pro-
posed by Paul Clements and colleagues
from Carnegie Mellon University.

“I run the same software in different
kinds of helicopters. When the software
in a helicopter powers up, it checks a
hardware register to see what kind of
helicopter it is and starts behaving
appropriately for that kind of helicopter.
When [make a change to the software, |
would like to flight test it only on one
helicopter, and prove or (more likely,
assert with high confidence) that it will
run correctly on the other helicopters. |
know I can't achieve this for all changes,
but I would like to do it where possible.”

In an SPL context, this problem can be
rephrased as: assuming various products
(eg helicopters) derived from an SPL
have been formally certified, what can
be guaranteed for new products obtained
from the SPL once one or more core
components have been modified?

We took a first step towards a solution
by adapting assume-guarantee rea-
soning, which sees the environment of a
component as a set of properties, called
assumptions, that should be satisfied for
its functioning. If these assumptions are

satisfied by the environment, then com-
ponents in this environment will typi-
cally satisfy other properties, called
guarantees. By appropriately combining
these properties, it is possible to prove
the correctness of a system before actu-
ally constructing it. Our idea is to
permit selective (re-)testing and model
checking of assume-guarantee proper-
ties on only those SPL components and
products affected by the evolution.

Figure 2 contextualizes our work.
Components used in the PLA of the SPL
of interest are enriched with assume and

guarantee properties (top left). The PLA
configuration provides context to the
assumptions and guarantees: given a
component C with its assume-guarantee
pair, its environment becomes the sub-
architecture connected with C. The
process is complicated by the fact that
the reasoning is performed on the PLA,
including all variation points, rather
than on each indivdual product. This
means that the assumptions need to be
calculated in a smart way taking into
consideration the variability manage-
ment of the components. Once a com-
ponent evolves (top right), this modifi-

Product Family

Modified
Product Family

Figure 1: Evolution requires quality re-evaluation.

Original PLA

Evolved PLA

PLA
Specification

(Derived)
PAs

Figure 2: Contextualization of our work

ERCIM NEWS 88 January 2012

cation is expected to have an impact on
several Product Architectures (PAs),
namely each PA that contains the modi-
fied component. For instance, when B
evolves into B', the assumption and
guarantee pairs of both B and B' must be
checked.

Our solution thus envisages a combina-
tion of regression testing and assume-
guarantee testing applied to evolving
PLAs. Conceptually, this requires us to
better understand two issues.

First, how to extend assume-guarantee
testing to evolving architectures. The
assume-guarantee pair associated with
each component in an architecture is

Software Evolution

Line Engineering

normally used to generate component-
specific testing traces which, once eval-
uated against the appropriate assume-
guarantee premise, can show whether
the composition of components can pro-
duce failures. Assuming a PLA/PA has
been tested, the challenge becomes how
to apply assume-guarantee reasoning
for regression testing the modified
PLA/PA (see (1) and (2) in Figure 2,
respectively). Second, how to use the
relationships between a PLA and its PAs
(see (3) in Figure 2) to apply regression
testing to the evolved PAs.

In summary, we currently envisage
what we call a double regression testing
approach, in which an evolved product

by Silvia Abrahao, Javier Gonzalez, Emilio Insfran and Isidro Ramos

(eg PA3' in Figure 2) can be tested
based on how it regressed from PA3,
and based on its relationship with the
architecture of its family, PLA' (cf.
Figure 2). Our expectation is that this
considerably reduces the effort needed
to re-analyze products of an SPL upon
its evolution.

We are working out the details of our
approach, after which we intend to
implement it and investigate its effec-
tiveness by applying it to case studies.

Please contact:

Maurice ter Beek

ISTI-CNR

E-mail: maurice.terbeek@isti.cnr.it

in Model-Driven Product

New requirements and technology changes lead to continuous changes of the assets comprising a
software product line. Since the product line represents a large number of potential products (or
already deployed products) in a given domain, managing these changes becomes a key issue when
dealing with evolution. We present a framework to support the development and evolution of high-
quality software product lines. The framework is based on several interrelated models or system
views (eg, functionality, variability, quality) and a production plan defined by model transformations
that generate a software system that meets both functional and quality requirements. We used our
framework to develop a software system for the automotive domain.

Software Product Lines (SPLs) are fami-
lies of products that share common func-
tionality but also have variations tailored
for different customer needs. Many of
the benefits expected from SPLs are
based on the assumption that the addi-
tional investment in setting up a product
line pays off later when products are cre-
ated. However, product line assets have
to evolve continuously in order to keep
the economic benefits of a product line
at an optimal level. Managing this evo-
lution therefore becomes a key issue
when maintaining a product line.

In the MULTIPLE project, we defined a
framework to support the development
and evolution of high-quality SPLs. This
framework is based on the definition of
a multimodel that represents the dif-
ferent system views and the relation-
ships among them. The variability man-
agement involves the manipulation of
features, represented as cardinality-
based feature models, and the support of
such variability in the so-called product

ERCIM NEWS 88 January 2012

line core assets. Specifications of the
system variability, functionality, and
quality can be dealt with models that are
independent from each other but where
their inter-consistency is assured by
means of the relationships defined in
this multimodel.

The SPL production plan is parameter-
ized by means of the multimodel which
specifies the corresponding model
transformations that are needed to
obtain a specific product with the
desired features, functions, and quality.

Figure 1 shows the multimodel playing
a pivotal role in the SPL production
plan. In the domain engineering phase it
is used to express the impact and con-
straints among features, functional
components and quality attributes,
describing in this way, the extension of
the product line. In the application engi-
neering phase, it guides the product
configuration, allowing the selection of
features and functional components that

meets the quality attributes selected by
the application engineer. This approach
leads us to re-consider the problems
related to the intra (eg internal consis-
tency of the feature model) and inter-
model consistency (eg correspondences
among elements of the feature and
quality models) in a broader and real-
istic context.

Model-based evolution of software sys-
tems implies the evolution by using
models, eg applying model-driven tech-
niques to support product evolution, or
the evolution of models, ie the evolution
of the models/metamodels that describe
the product. In our framework these
evolutions are done by means of reifica-
tion of software artifacts at the met-
alevel. When the evolution affects the
types then the metamodels need to be
reified and evolved. A reflection
process translates to the source level the
evolved artifact. At a model level, the
process is similar. The models are rei-
fied at the metalevel, evolved, and then

41

