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Aim of our research activity

To express in a single framework feature-based constraints over
the products of a family and constraints over their behaviour
To provide tools to support this framework with formal verification

In our search for a single logical framework in which to express
both static and behavioural aspects of product families:

we present a straightforward characterization of feature models by
means of deontic logics
we define a deontic extension of a behavioural logic, called DHML,
that allows to express in a single framework both static constraints
over the products of a family and constraints over their behaviour
we give a semantic interpretation of DHML over MTSs, for which a
verification framework based on model-checking techniques could
be implemented
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Running example: Coffee machine family
Feature model:

requires

Coffee1$ 1e

Coin Beverage

Coffee Machine

Ringtone

Tea Cappuccino

mandatoryoptional alternative excludes

Modal Transition System:

- - - possible transitions
— required transitions

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs 4 / 15



Static & behavioural requirements of product families

Static requirements identify the features constituting different products
and behavioural requirements the admitted sequences of operations

Static requirements of product families
The only accepted coins are the 1 euro coin (1e), exclusively for
the European products and the 1 dollar coin (1$), exclusively for
the US products (1e and 1$ are exclusive (alternative) features)
A cappuccino is only offered by European products (excludes
relation between features)

Behavioural requirements of product families
After inserting a coin, the user has to choose whether or not (s)he
wants sugar, by pressing one of two buttons, after which (s)he
may select a beverage
The machine returns to its idle state when the beverage is taken
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Deontic logic

Deontic logic provides a natural way to formalize concepts like
violation, obligation, permission and prohibition
Deontic logic seems to be very useful to formalize product families
specifications, since they allow one to capture the notions of
optional, mandatory and alternative features
Deontic logic seems to be very useful to formalize feature
constraints such as requires and excludes.

⇒ Deontic logic seems to be a natural candidate for expressing
the conformance of products with respect to variability rules
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Deontic logic - continued

A deontic logic consists of the standard operators of propositional logic,
i.e. negation (¬), conjunction (∧), disjunction (∨) and implication (=⇒),
augmented with deontic operators (O and P in our case)

The most classic deontic operators, namely it is obligatory that (O) and
it is permitted that (P) enjoy the duality property

Informal meaning of the deontic operators
O(α): action α is obligatory (required transition)
P(α) = ¬O(¬α): action α is permitted (possible transition)

if and only if its negation is not obligatory
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Construction of deontic characterization of FM

• If A is a feature and A1 and A2 are subfeatures, add the formula:

A =⇒ Φ(A1,A2), where Φ(A1,A2) is defined as:

Φ(A1,A2) = (O(A1) ∨O(A2)) ∧ ¬(P(A1) ∧ P(A2)) if A1, A2 alternative,
and otherwise:
Φ(A1,A2) = φ(A1) ∧ φ(A2), in which Ai , for i ∈ {1,2}, is defined as:

φ(Ai) =

{
P(Ai) if Ai is optional
O(Ai) if Ai is mandatory

• If A requires B, add the formula A =⇒ O(B)

• If A excludes B, add the formula (A =⇒ ¬P(B)) ∧ (B =⇒ ¬P(A))
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Example static properties of families

Characteristic formula of Coffee machine family

O(Coin) ∧O(Beverage) ∧ P(Ringtone)

∧
Coin =⇒ (O(1$) ∨O(1e)) ∧ ¬(P(1$) ∧ P(1e))

Beverage =⇒ O(Coffee) ∧ P(Tea) ∧ P(Cappuccino)

∧
Cappuccino =⇒ O(Ringtone)

(1$ =⇒ ¬P(Cappuccino)) ∧ (Cappuccino =⇒ ¬P(1$))

Two example coffee machines

CM1 = {Coin,1e,Beverage,Coffee}
CM2 = {Coin,1e,Beverage,Coffee,Cappuccino}

CM1 in family, but CM2 not: Cappuccino =⇒ O(Ringtone) false
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DHML: Deontic Hennesy-Milner Logic with until
DHML is a temporal logic based on the “Hennessy-Milner logic with until” [Larsen],
augmented with the deontic O and P operators à la PDL logic [Castro & Maibaum]
and the path operators E and A from CTL [Clarke et alii]

Syntax of DHML
φ ::= true | p | ¬φ | φ ∧ φ′ | [α]φ | Eπ | Aπ | O(α) | P(α)

π ::= φ U φ′

Informal meaning of remaining operators (p is a proposition)
[α]φ: for all next states reachable with α, φ holds

E π: there exists a path on which π holds

Aπ: on each of the possible paths π holds

φ U φ′: in the current or a future state φ′ holds, while φ holds until that state

Usual abbreviations
false = ¬true, φ ∨ φ′ = ¬(¬φ ∧ ¬φ′), φ =⇒ φ′ = ¬φ ∨ φ′, 〈α〉φ = ¬[α]¬φ,
EFφ = E (tt U φ), AGφ = ¬EF¬φ
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DHML: Semantics with MTS as interpretation structure
→⊆ S × Act × S: transitions between states S are labelled with actions Act
transitions are either required (—) or possible (- - -)
L : S → 2AP : states are labelled with Atomic Propositions AP as well as with the
events allowed in the states (i.e. Act ⊆ AP)
P⊆S×Act denotes the actions which are permitted in a state: P(s, α) iff α∈L(s)

The satisfaction relation of DHML is defined as follows:
s |= true always holds
s |= p iff p ∈ L(s)

s |= ¬φ iff not s |= φ

s |= φ ∧ φ′ iff s |= φ and s |= φ′

s |= [α]φ iff s α−→♦ s′, for some s′ ∈ S, implies s′ |= φ

s |= Eπ iff there exists a path σ starting in state s such that σ |= π

s |= Aπ iff σ |= π for all paths σ starting in state s
s |= P(α) iff P(s, α) holds
s |= O(α) iff P(s, α) holds and ∃s′ : s α−→� s′

σ |= [φ U φ′] iff there exists a state sj , for some j ≥ 0, on the path σ such that
for all states sk , with j ≤ k , sk |= φ′ while for all states si , with 0 ≤ i < j , si |= φ
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MTS of a European Coffee Machine

A product is represented by a MTS with only required transitions:
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Example behavioural properties of families

Behavioural properties of families
1 It is possible to get a coffee with 1e:

[1e] EF <coffee> true

2 It is always possible to ask for sugar:

AF <sugar> true

3 It is not possible to get a beverage without inserting a coin:

AG (¬(coffee ∨ tea ∨ cappuccino) U (<1e> true ∨ <1$> true))
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Example static and behavioural properties of families

Static and behavioural properties of families
1 actions 1e and 1$ are exclusive (alternative features):

((EF <1$> true) =⇒ (AG ¬P(1e))) ∧
((EF <1e> true) =⇒ (AG ¬P(1$)))

2 a cappuccino is only offered by European products (excludes
relation between features):

((EF <cappuccino> true) =⇒ (AG ¬P(1$))) ∧
((EF <1$> true) =⇒ (AG ¬P(cappuccino)))

3 a ringtone is rung whenever a cappuccino is delivered (requires
relation between features):

(EF <cappuccino> true) =⇒ (AF O(ring_a_tone))
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Conclusions and open problems

Research in Progress—what we have done so far
1 defined a deontic characterization of a feature model (static requirements over a family)
2 defined behavioural deontic logic DHML to express the behavioural variability of a family

Research in Progress—what we are working on
a model checker able to automatically verify DHML formulae over models described as
MTSs, with possible constraints expressed in DHML itself

exploit the relation between MTSs and L2TSs to reuse the UMC model-checking engine
(on-the-fly model checker designed for the efficient verification of UCTL logic over L2TSs)

compare the expressiveness of UCTL and DHML, which might lead to enhancements to
the model-checking engine to cover DHML deontic operators

Research in Progress—what remains to be done
how to express dependencies of variation points?

how to identify properties that, proved on a family, are preserved by all its products?

how does this scale to real problems and to incremental family construction?

how to hide the logic and verification technicalities from the end user?

what else???
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