A deontic logical framework for

modelling product families
Research in progress

P. Asirelli, M.H. ter Beek, S. Gnesi, A. Fantechi
ISTI-CNR, Universita di Firenze

VAMOS 2010
Linz, Austria

27 January 2010

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

@ Aim of our research activity

e Running example

e Deontic logic

@ Deontic characterization of feature models
© Our DHML logic

@ Static and behavioural properties of families

e Conclusions

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

Aim of our research activity

@ To express in a single framework feature-based constraints over
the products of a family and constraints over their behaviour

@ To provide tools to support this framework with formal verification

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

Aim of our research activity

@ To express in a single framework feature-based constraints over
the products of a family and constraints over their behaviour

@ To provide tools to support this framework with formal verification

In our search for a single logical framework in which to express

both static and behavioural aspects of product families:

@ we present a straightforward characterization of feature models by
means of deontic logics

@ we define a deontic extension of a behavioural logic, called DHML,
that allows to express in a single framework both static constraints
over the products of a family and constraints over their behaviour

@ we give a semantic interpretation of DHML over MTSs, for which a
verification framework based on model-checking techniques could
be implemented

v

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

Running example: Coffee machine family

Feature model: \

optional mandatory alternative excludes_requires

Coffee Machine

Beverage

Ringtone
\]

Modal Transition System:

{1€,1$}

i1s

iea cappuccino;

{pou? {pour_ 6 i {pour_ {gour_
sugar} \ sugar} pour_sugar coffee} tea}
pour_sugar

pour_sugar

9
{pour_coffec}

pour_(x)ffee\ pour_tea! pour_coffee

11
{cup_taken}

hel)

.;i-ng_a_wne {cup,tak;n Jing_a_tone}

P. Asirelli et al. (ISTI-CNR, Univ. Firenze)

‘ ‘ Coffee ‘ ‘ Tea ‘ ‘ Cappuccino ‘

— required transitions
- - - possible transitions

A deontic logical framework for modelling PLs

Static & behavioural requirements of product families

Static requirements identify the features constituting different products
and behavioural requirements the admitted sequences of operations

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

Static & behavioural requirements of product families

Static requirements identify the features constituting different products
and behavioural requirements the admitted sequences of operations

Static requirements of product families

@ The only accepted coins are the 1 euro coin (1€), exclusively for
the European products and the 1 dollar coin (1$), exclusively for
the US products (1€ and 1$ are exclusive (alternative) features)

@ A cappuccino is only offered by European products (excludes
relation between features)

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

Static & behavioural requirements of product families

Static requirements identify the features constituting different products
and behavioural requirements the admitted sequences of operations

Static requirements of product families

@ The only accepted coins are the 1 euro coin (1€), exclusively for
the European products and the 1 dollar coin (1$), exclusively for
the US products (1€ and 1$ are exclusive (alternative) features)

@ A cappuccino is only offered by European products (excludes
relation between features)

Behavioural requirements of product families

@ After inserting a coin, the user has to choose whether or not (s)he
wants sugar, by pressing one of two buttons, after which (s)he
may select a beverage

@ The machine returns to its idle state when the beverage is taken

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

Deontic logic

@ Deontic logic provides a natural way to formalize concepts like
violation, obligation, permission and prohibition

@ Deontic logic seems to be very useful to formalize product families
specifications, since they allow one to capture the notions of
optional, mandatory and alternative features

@ Deontic logic seems to be very useful to formalize feature
constraints such as requires and excludes.

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

Deontic logic

@ Deontic logic provides a natural way to formalize concepts like
violation, obligation, permission and prohibition

@ Deontic logic seems to be very useful to formalize product families
specifications, since they allow one to capture the notions of
optional, mandatory and alternative features

@ Deontic logic seems to be very useful to formalize feature
constraints such as requires and excludes.

=- Deontic logic seems to be a natural candidate for expressing
the conformance of products with respect to variability rules

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

Deontic logic - continued

A deontic logic consists of the standard operators of propositional logic,
i.e. negation (—), conjunction (A), disjunction (V) and implication (=),
augmented with deontic operators (O and P in our case)

The most classic deontic operators, namely it is obligatory that (O) and
it is permitted that (P) enjoy the duality property

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

Deontic logic - continued

A deontic logic consists of the standard operators of propositional logic,
i.e. negation (—), conjunction (A), disjunction (V) and implication (=),
augmented with deontic operators (O and P in our case)

The most classic deontic operators, namely it is obligatory that (O) and
it is permitted that (P) enjoy the duality property

Informal meaning of the deontic operators

@ O(w): action « is obligatory (required transition)

@ P(a) = —O(—a): action « is permitted (possible transition)
if and only if its negation is not obligatory

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

Construction of deontic characterization of FM

e If Ais a feature and A; and A, are subfeatures, add the formula:
A = ®(A1,A2), where ®(Aq, Ay) is defined as:

¢(A1 , Ag) = (O(A1) V O(Ag)) AN —|(P(A1) N P(Ag)) if Ay, A> alternative,
and otherwise:
®(A1, A2) = ¢(A1) A ¢(Az), in which A;, for i € {1,2}, is defined as:

S(A) P(A;) if A;is optional
7= O(A) if A is mandatory

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

Construction of deontic characterization of FM

e If Ais a feature and A; and A, are subfeatures, add the formula:
A = ®(A1,A2), where ®(Aq, Ay) is defined as:

¢(A1 , Ag) = (O(A1) V O(Ag)) AN —|(P(A1) N P(Ag)) if Ay, A> alternative,
and otherwise:
®(A1, A2) = ¢(A1) A ¢(Az), in which A;, for i € {1,2}, is defined as:

S(A) P(A;) if A;is optional
7= O(A) if A is mandatory

o If Arequires B, add the formula A = O(B)

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

Construction of deontic characterization of FM

e If Ais a feature and A; and A, are subfeatures, add the formula:
A = o®(Aq1,A2), where ®(Aq, As) is defined as:

¢(A1 , Ag) = (O(A1) V O(Ag)) AN —|(P(A1) N P(Ag)) if Ay, Ao alternative,
and otherwise:
®(A1, A2) = ¢(A1) A ¢(Az), in which A;, for i € {1,2}, is defined as:

B(A)) = P(A;) if A;is optional
7= O(A) if A is mandatory

v

o If Arequires B, add the formula A = O(B) J

o If A excludes B, add the formula (A = —-P(B)) A (B = —P(A))]

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

Example static properties of families

Characteristic formula of Coffee machine family

O(Coin) A O(Beverage) A P(Ringtone)

A

Coin = (O(1%) v O(1€)) A =(P(1%) A P(1€))
Beverage — O(Coffee) A P(Tea) A P(Cappuccino)
A

Cappuccino = O(Ringtone)

(1$ = —P(Cappuccino)) A (Cappuccino = —P(1%))

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

Example static properties of families

Characteristic formula of Coffee machine family

O(Coin) A O(Beverage) A P(Ringtone)

A

Coin = (O(1%) v O(1€)) A =(P(1%) A P(1€))
Beverage — O(Coffee) A P(Tea) A P(Cappuccino)
A

Cappuccino = O(Ringtone)

(1$ = —P(Cappuccino)) A (Cappuccino = —P(1%))

v

Two example coffee machines

CM1 = {Coin, 1€, Beverage, Coffee}
CM2 = {Coin, 1€, Beverage, Coffee, Cappuccino}

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

Example static properties of families

Characteristic formula of Coffee machine family

O(Coin) A O(Beverage) A P(Ringtone)

A

Coin = (O(1%) v O(1€)) A =(P(1%) A P(1€))
Beverage — O(Coffee) A P(Tea) A P(Cappuccino)
A

Cappuccino = O(Ringtone)

(1$ = —P(Cappuccino)) A (Cappuccino = —P(1%))

v

Two example coffee machines

CM1 = {Coin, 1€, Beverage, Coffee}
CM2 = {Coin, 1€, Beverage, Coffee, Cappuccino}

CM1 in family, but CM2 not: Cappuccino = O(Ringtone) false

A deontic logical framework for modelling PLs

P. Asirelli et al. (ISTI-CNR, Univ. Firenze)

DHML: Deontic Hennesy-Milner Logic with until

DHML is a temporal logic based on the “Hennessy-Milner logic with until” [Larsen],

augmented with the deontic O and P operators a la PDL logic [Castro & Maibaum]
and the path operators E and A from CTL [Clarke et alii]

P. Asirelli et al. (ISTI-CNR, Univ. Firenze)

A deontic logical framework for modelling PLs

DHML: Deontic Hennesy-Milner Logic with until

DHML is a temporal logic based on the “Hennessy-Milner logic with until” [Larsen],
augmented with the deontic O and P operators a la PDL logic [Castro & Maibaum]
and the path operators E and A from CTL [Clarke et alii]

n= true|p|-¢ oA |[a]é| En | Ar| Oa) | Pa)
m = ¢U¢

<
I

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

DHML: Deontic Hennesy-Milner Logic with until

DHML is a temporal logic based on the “Hennessy-Milner logic with until” [Larsen],
augmented with the deontic O and P operators a la PDL logic [Castro & Maibaum]
and the path operators E and A from CTL [Clarke et alii]
Syntax of DHML

¢ u= true|p|-¢|oA¢ |[a]¢|En|Ar|O(a)| P(a)

m = ¢U¢

A\

Informal meaning of remaining operators (p is a proposition)
@ [a] ¢: for all next states reachable with a, ¢ holds
@ E r: there exists a path on which 7 holds
@ Am: on each of the possible paths 7 holds
@ ¢ U¢': inthe current or a future state ¢’ holds, while ¢ holds until that state

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

DHML: Deontic Hennesy-Milner Logic with until

DHML is a temporal logic based on the “Hennessy-Milner logic with until” [Larsen],
augmented with the deontic O and P operators a la PDL logic [Castro & Maibaum]
and the path operators E and A from CTL [Clarke et alii]

Syntax of DHML
¢ u= true|p|—¢|oAd |[a]g|En|Ar|O(a)| P(a)
T u= ¢U¢

Informal meaning of remaining operators (p is a proposition)

@ [a] ¢: for all next states reachable with a, ¢ holds

@ E r: there exists a path on which 7 holds

@ Am: on each of the possible paths 7 holds

@ ¢ U¢': inthe current or a future state ¢’ holds, while ¢ holds until that state

Usual abbreviations

false = —true, ¢V ¢ = —(~pA—¢'), ¢ = ¢ =V ¢, (a)d = —[a]-d,
EF¢ = E(ttU ¢), AGp = ~EF ¢

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

DHML: Semantics with MTS as interpretation structure

@ — C S x Act x S: transitions between states S are labelled with actions Act
@ transitions are either required (—) or possible (- --)

@ L: S — 2" states are labelled with Atomic Propositions AP as well as with the
events allowed in the states (i.e. Act C AP)

@ PC SxAct denotes the actions which are permitted in a state: P(s, «) iff a € L(s)

The satisfaction relation of DHML is defined as follows:
@ s = frue always holds
sk p iff peL(s)
Sk= ¢ iff notsk=¢
sEoN iff sEdands k¢
sk [alg iff s ¢ &, forsome s’ € S, implies 8’ = ¢
s | Ex iff there exists a path o starting in state s such thato =
S |= Ar iff o |= = for all paths o starting in state s
s |E P(«) iff P(s,«) holds
s O(a) iff P(s,a)holds and 35’ : s % &'
o = [¢p U] iff there exists a state s;, for some j > 0, on the path o such that
for all states sk, with j < k, sk |= ¢" while for all states s;, with0 < i <j, s = ¢

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

MTS of a European Coffee Machine

A product is represented by a MTS with only required transitions:

{cup_taken} £ {ring_a_tone}

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

Example behavioural properties of families

Behavioural properties of families

@ ltis possible to get a coffee with 1€:

[1€] EF < coffee> true
@ ltis always possible to ask for sugar:
AF <sugar> true

© It is not possible to get a beverage without inserting a coin:

AG (—(coffee v tea Vv cappuccino) U (<1€> true vV <1$> true))

v

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

Example static and behavioural properties of families

Static and behavioural properties of families

@ actions 1€ and 1$ are exclusive (alternative features):

((EF <1%$> true) = (AG -P(1€))) A
((EF <1€> true) = (AG —P(1%)))

© a cappuccino is only offered by European products (excludes
relation between features):

((EF <cappuccino> true) — (AG —-P(1%))) A
((EF <1%$> true) — (AG —P(cappuccino)))

© aringtone is rung whenever a cappuccino is delivered (requires
relation between features):

(EF <cappuccino> true) — (AF O(ring_a_tone))

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

Conclusions and open problems

Research in Progress—what we have done so far

0 defined a deontic characterization of a feature model (static requirements over a family)
e defined behavioural deontic logic DHML to express the behavioural variability of a family

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

Conclusions and open problems
Research in Progress—what we have done so far

@ defined a deontic characterization of a feature model (static requirements over a family)
e defined behavioural deontic logic DHML to express the behavioural variability of a family

Research in Progress—what we are working on

@ a model checker able to automatically verify DHML formulae over models described as
MTSs, with possible constraints expressed in DHML itself

@ exploit the relation between MTSs and L2TSs to reuse the UMC model-checking engine
(on-the-fly model checker designed for the efficient verification of UCTL logic over L°TSs)

@ compare the expressiveness of UCTL and DHML, which might lead to enhancements to
the model-checking engine to cover DHML deontic operators

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

Conclusions and open problems
Research in Progress—what we have done so far

o defined a deontic characterization of a feature model (static requirements over a family)
e defined behavioural deontic logic DHML to express the behavioural variability of a family

v

Research in Progress—what we are working on

@ a model checker able to automatically verify DHML formulae over models described as
MTSs, with possible constraints expressed in DHML itself

@ exploit the relation between MTSs and L2TSs to reuse the UMC model-checking engine
(on-the-fly model checker designed for the efficient verification of UCTL logic over L°TSs)

@ compare the expressiveness of UCTL and DHML, which might lead to enhancements to
the model-checking engine to cover DHML deontic operators

v
Research in Progress—what remains to be done
@ how to express dependencies of variation points?
@ how to identify properties that, proved on a family, are preserved by all its products?
@ how does this scale to real problems and to incremental family construction?

@ how to hide the logic and verification technicalities from the end user?
@ what else???

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling PLs

	Aim of our research activity
	Running example
	Deontic logic
	Deontic characterization of feature models
	Our DHML logic
	Static and behavioural properties of families
	Conclusions

